
MATH 155R: ALGEBRAIC COMBINATORICS

COLIN DEFANT

1. Tuesday September 5

CAs: Katherine Tung and Eliot Hodges

1.1. Bookkeeping.
(1) Colin’s Office Hours: Thursdays from 3-4pm in SC 235 (Colin’s office). The time may be

subject to change based on the availability of the students in the class.
(2) CA Office Hours: TBD. Keep an eye out for a when2meet on Canvas. CA office hours will

be scheduled based on your availability.
(3) Grading policy: There are 5 problem sets. Homework is worth 80% of the grade, with

a final exam making up the last 20%. Each student gets 5 late days to be used at their
discretion throughout the semester. See the syllabus for a more detailed explanation of
grading policies.

1.2. Course Intro. The symmetric group 𝑆𝑛 is the group of permutations of the first 𝑛 integers,
which we denote by [𝑛] := {1, . . . , 𝑛}. The group operation is composition. A permutation can
be represented in one-line notation or cycle notation.

Example 1.1. Consider 𝑆6 and the permutation taking 1 ↦→ 4, 2 ↦→ 6, 3 ↦→ 5, 4 ↦→ 3, 5 ↦→ 1, and
6 ↦→ 2. In one-line notation, we represent this element by 465312. In cycle notation, we represent
it by (1435) (26).

Note that we can immediately see that |𝑆𝑛 | = 𝑛!.
An inversion of𝑤 ∈ 𝑆𝑛 is a pair (𝑖, 𝑗) where 𝑖 < 𝑗 and𝑤−1(𝑖) > 𝑤−1( 𝑗). In one-line notation,

(𝑖, 𝑗) with 𝑖 < 𝑗 is an inversion if 𝑗 appears before 𝑖 .

Example 1.2. Consider 31425 ∈ 𝑆5. The inversions are (1, 3), (2, 3), and (2, 4).

Here’s another fact: ∑︁
𝑤∈𝑆𝑛

𝑞inv(𝑤) =
𝑛∏
𝑖=1

1 − 𝑞𝑖
1 − 𝑞 ,

where inv(w) denotes the number of inversions of𝑤 and 𝑞 denotes a formal variable.
Say 𝜏 ∈ 𝑆𝑘 . Say a permutation 𝑤 ∈ 𝑆𝑛 contains 𝜏 if there is a subsequence 𝜏 if there is a

subsequence of𝑤 that has the same relative order as 𝜏 . We say𝑤 avoids 𝜏 if it does not contain 𝜏 .

Example 1.3. 421635 contains 231 (look at the 4, 6, and 3 in the first permutation). As an exercise,
check for yourself that 312645 avoids 231.

Fact: Fix some 𝜏 ∈ 𝑆3. The number of permutations in 𝑆𝑛 that avoid 𝜏 is 𝐶𝑛 = 1
𝑛+1

(2𝑛
𝑛

)
.

The numbers 𝐶𝑛 are the Catalan numbers, a very important sequence of numbers in algebraic
combinatorics. The first few of these are: 1, 2, 5, 14, 42, 132, . . ..
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Question 1.4. (Open) How many permutations in 𝑆𝑛 avoid 1324? Although this question is easy
to state, this is actually very hard.
Exercise 1.5. There are several facts in the lecture that were stated without proof. If you haven’t
seen these before (or even if you have), try proving them yourself!

A descent of a permutation 𝑤 of 𝑆𝑛 is an index 𝑖 ∈ [𝑛 − 1] such that 𝑤 (𝑖) > 𝑤 (𝑖 + 1). A
transposition is a 2-cycle, i.e., a permutation that swaps two numbers and fixes everything else.
Write (𝑖 𝑗) for the transposition swapping 𝑖 and 𝑗 .

1.3. 𝑆𝑛 as a Coxeter Group. Let 𝑠𝑖 = (𝑖 𝑖 + 1) ∈ 𝑆𝑛 for 𝑖 ∈ [𝑛 − 1]. The 𝑠𝑖 ’s are called adjacent
transpositions, simple transpositions, or simple reflections. The following is a good fact:
Fact 1.6. The symmetric group 𝑆𝑛 is generated by 𝑠1, . . . , 𝑠𝑛−1. The 𝑠𝑖 ’s satisfy the following
relations:
(1) 𝑠2

𝑖 = 𝑒 (where 𝑒 denotes the identity element);
(2) (𝑠𝑖𝑠 𝑗 )2 = 𝑒 if |𝑖 − 𝑗 | ≥ 2;
(3) (𝑠𝑖𝑠𝑖+1)3 = 𝑒 .

The above set of relations is equivalent to the following set of relations:
(1) 𝑠2

𝑖 = 𝑒;
(2) 𝑠𝑖𝑠 𝑗 = 𝑠 𝑗𝑠𝑖 if |𝑖 − 𝑗 | ≥ 2 (commutation relations);
(3) 𝑠𝑖𝑠𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑠𝑖𝑠𝑖+1 (braid relations).

The 𝑠𝑖 ’s with either of the above sets of relations form a presentation of 𝑆𝑛 .
Example 1.7. We illustrate Fact 1.6 with an example. Consider 𝑤 = 52341 ∈ 𝑆5. We can write
𝑤 as a product of simples by multiplying on the right by simples until we get the identity on the
left:

12345 = 𝑤𝑠1𝑠4𝑠2𝑠3𝑠4𝑠2𝑠1.

Hence, 𝑤 = 𝑠1𝑠2𝑠4𝑠3𝑠2𝑠4𝑠1. However, this way of writing 𝑤 as a product of simples is not unique
(consider 𝑠1𝑠2𝑠4𝑠3𝑠2𝑠4𝑠1𝑠3𝑠3).

A reduced word for a permutation𝑤 is a way of writing𝑤 as product of simples such that the
product has minimal length (see the product of simples in the example above—is 𝑠1𝑠2𝑠4𝑠3𝑠2𝑠4𝑠1 a
reduced word for 52341?).
Fact 1.8. The number of ways to write the permutation 𝑛(𝑛 − 1) · · · 321 is(𝑛+1

2
)
!

1𝑛3𝑛−15𝑛−2 · · · (2𝑛 − 1)1 .

1.4. Coxeter Groups. We would like to generalize the objects (e.g., simple transpositions, re-
duced words, etc.) introduced for 𝑆𝑛 in the previous subsection to Coxeter groups. Coxeter groups
bring together the following fields of study:
(1) Combinatorics

- generalize from 𝑆𝑛
- reduced words
- posets (Bruhat order, weak order, absolute order, convex sets)

(2) Geometry
- Hyperplane arrangements
- polytopes
- root systems
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(3) Algebra
- Group theory (duh)
- Weyl groups of semisimple Lie algebras
- Representation theory, Hecke algebras, etc.

N.B. The class is not exclusively about Coxeter groups, though they indeed are our main object
of study. Throughout we will see other objects of interest from algebraic combinatorics.
Definition 1.9. Let 𝑆 be a (usually finite) set. For 𝑠, 𝑠′ ∈ 𝑆 , choose𝑚(𝑠, 𝑠′) = 𝑚(𝑠′, 𝑠) ∈ ℕ ∪ {∞}
such that𝑚(𝑠, 𝑠) = 1 for all 𝑠 ∈ 𝑆 and𝑚(𝑠, 𝑠′) ≥ 2 if 𝑠 ≠ 𝑠′. This will be the data that defines our
Coxeter group. Let𝑊 be the group with presentation

𝑊 = ⟨𝑆 | (𝑠𝑠′)𝑚(𝑠,𝑠′) = 𝑒 for all 𝑠, 𝑠′ ∈ 𝑆⟩.
The pair (𝑊,𝑆) is called a Coxeter system; 𝑆 is called the set of simple generators (or simple reflec-
tions);𝑊 is called a Coxeter group.
Remark 1.10. For all 𝑠 ∈ 𝑆 , we have 𝑠2 = 𝑒 . If 𝑚(𝑠, 𝑠′) = 2, then 𝑠 and 𝑠′ commute: 𝑠𝑠′𝑠𝑠′ = 𝑒

implies 𝑠′𝑠 = 𝑠𝑠′. If𝑚(𝑠, 𝑠′) ≥ 3, then 𝑠 and 𝑠′ do not commute.
There is a nice way of representing the data of a Coxeter system using a graph called the

Coxeter graph (sometimes Dynkin diagram).
Definition 1.11. The Coxeter graph of (𝑊,𝑆) is the graph with vertex set 𝑆 , where 𝑠 and 𝑠′ are
adjacent when𝑚(𝑠, 𝑠′) ≥ 3. If𝑚(𝑠, 𝑠′) ≥ 4, we label the edge between 𝑠 and 𝑠′ with this number.
Example 1.12. Picture I can’t draw quickly in tikz. In words, 𝑆 = {𝑠1, 𝑠2, 𝑠3}; there are edges
between 𝑠𝑖 and 𝑠𝑖+1 for 1 ≤ 𝑖 ≤ 2, where the edge between 𝑠1 and 𝑠2 is labeled by 4 and the edge
between 𝑠2 and 𝑠3 is unlabeled. Quickly, we see that𝑚(𝑠1, 𝑠2) = 4,𝑚(𝑠2, 𝑠3) = 3, and𝑚(𝑠1, 𝑠3) = 2.
Example 1.13. Consider 𝑆 = {𝑠1, . . . , 𝑠𝑛} with no edges between the vertices. Here we see that
𝑊 ≃ (ℤ2)𝑛 .
Example 1.14. Consider 𝑆 = {𝑠1, . . . , 𝑠𝑛} with unlabeled edges between 𝑠𝑖 and 𝑠𝑖+1 for 𝑖 ∈ [𝑛−1].
Then𝑊 ≃ 𝑆𝑛 . Note that𝑚(𝑠𝑖, 𝑠𝑖) = 1,𝑚(𝑠𝑖, 𝑠 𝑗 ) = 2 if |𝑖 − 𝑗 | ≥ 2, and𝑚(𝑠𝑖, 𝑠𝑖+1) = 3. As an exercise,
prove that𝑊 ≃ 𝑆𝑛 .
Example 1.15. Consider 𝑆 = {𝑠1, 𝑠2, 𝑠3} with an unlabeled edge between 𝑠1 and 𝑠2 and no other
edges. Then𝑊 ≃ 𝑆3 × ℤ2. Note that if the Coxeter graph is disconnected, then𝑊 is the direct
product of the groups given by each connected component of the graph.
Example 1.16. Consider 𝑆 = {𝑟, 𝑠} with an edge between 𝑟 and 𝑠 labeled by𝑚. Then𝑊 = 𝐷𝑚 ,
the dihedral group of order 2𝑚. There is a nice picture here that I can’t draw.

2. Thursday September 7

2.1. Last Time. Recall that (𝑊,𝑆) is a Coxeter system, where 𝑆 is the set of simple generators (or
simple reflections) and𝑊 is the Coxeter group. We have the following presentation of𝑊 , where

𝑊 = ⟨𝑆 | (𝑠𝑠′)𝑚(𝑠𝑠′) = 𝑒⟩
and
(1) 𝑚(𝑠, 𝑠) = 1;
(2) 𝑚(𝑠, 𝑠′) =𝑚(𝑠′, 𝑠) ∈ {2, 3, . . .} ∪ {∞} if 𝑠 ≠ 𝑠′.

Proposition 2.1 (Proposition 1.1.1 in Bj orner-Brenti). For 𝑠, 𝑠′ ∈ 𝑆 , the order of 𝑠𝑠′ is𝑚(𝑠, 𝑠′).
We’ll postpone the proof until later on in the course.
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A Plethora of Examples. Here are some more examples of Coxeter groups.

Example 2.2. Consider 𝑆 = {𝑠0, . . . , 𝑠𝑛−1} where there are edges between 𝑠𝑖 and 𝑠𝑖+1 for 𝑖 ∈
{0, . . . , 𝑛 − 2}. Label the edge between 𝑠0 and 𝑠1 by 4; the rest of the edges are unlabeled. This
is called the 𝑛th hyperoctahedral group and is denoted 𝐵𝑛 . Alternatively, 𝐵𝑛 can be viewed as the
group of permutations of {−𝑛, . . . ,−1, 1, . . . , 𝑛} such that 𝑤 (−𝑖) = −𝑤 (𝑖) for all 𝑖 and 𝑤 ∈ 𝐵𝑛 .
Note that 𝐵𝑛 is isomorphic to a subgroup of 𝑆2𝑛 .

Elements of 𝐵𝑛 are called signed permutations. We can represent these elements using a one-
line notation. We’ll do definition by example: 2̄143̄ ∈ 𝐵4 denotes the permutation taking 1 ↦→ −2,
2 ↦→ 1, 3 ↦→ 4, and 4 ↦→ −3; from here we can determine that −1 ↦→ 2, −2 ↦→ −1, −3 ↦→ −4, and
−4 ↦→ 3. In other words, it’s enough to specify where 1, . . . , 𝑛 go; 𝑖 denotes −𝑖 in the one-line
notation.

Now, what are the simple reflections? For 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑠𝑖 = (𝑖 𝑖 + 1) (−𝑖 − (𝑖 + 1))
and 𝑠0 = (−1 1).

Finally, as an exercise, show that |𝐵𝑛 | = 2𝑛𝑛! (hint: count the elements using the one-line
notation). See Homework 1 to learn about the Coxeter group 𝐷𝑛 .

Example 2.3. The affine symmetric group, denoted 𝑆𝑛 , is the group of permutations𝑤 of ℤ such
that𝑤 (𝑖 +𝑛) = 𝑤 (𝑖) +𝑛 for all 𝑖 ∈ ℤ and𝑤 (1) +𝑤 (2) + · · · +𝑤 (𝑛) =

(𝑛+1
2
)
. For example, consider

𝑛 = 4 and the permutation given by

𝑠0 =

(
−4 −3 −2 −1 0 1 2 3 4 5
−3 −4 −2 −1 1 0 2 3 5 4

)
.1

In general, we let
𝑠𝑖 = · · · (𝑖 − 𝑛 𝑖 − 𝑛 + 1) (𝑖 + 𝑛 𝑖 + 𝑛 + 1) (𝑖 + 2𝑛 𝑖 + 2𝑛 + 1) · · ·

be the 𝑖 + 1st simple reflection. The Coxeter graph is a cycle of size 𝑛. where 𝑠𝑖 is adjacent to 𝑠𝑖+1
for all 𝑖 , where the indices are taken modulo 𝑛. Finally, note that |𝑆𝑛 | = ∞.

Example 2.4. The symmetry group of a regular polytope is a Coxeter group. Consider the fol-
lowing interesting examples.2

Dimension Regular Polytope Coxeter Graph
𝑑 simplex 𝐴𝑑 ≃ 𝑆𝑑+1
𝑑 cube 𝐵𝑑
𝑑 hyperoctahedron 𝐵𝑑
2 𝑚-gon 𝐼2(𝑚)
3 dodecahedron 𝐻3
3 icosahedron 𝐻3
4 24-cell 𝐹4
4 120-cell 𝐻4
4 600-cell 𝐻4

Coxeter groups can also be realized as reflection groups; we can realize this via the following
example.

Example 2.5. Consider 𝑆3.
1See if you can find the values of this permutation for 𝑛 of larger absolute value.
2I can’t draw graphs for these (sorry!), but I’ll refer you to theWikipedia page on Coxeter groups which will certainly
have pictures.

https://en.wikipedia.org/wiki/Coxeter_group
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For each line in the above picture, we can reflect across this line; 𝑆3 is the group generated by
all such reflections. In the picture below, the three bolded lines are the three simple reflections.
As an exercise, justify to yourself that any of the reflections can be written as a composition of
the three simple reflections.

In some sense, any Coxeter group can be regarded as the reflection group of some space
(though sometimes the examples will be weird and we’ll be reflecting through lines in hyperbolic
space).

2.2. Irreducible Coxeter Groups.

Definition 2.6. A Coxeter group𝑊 is said to be irreducible if its Coxeter graph is connected.
Otherwise,𝑊 is said to be reducible. As an exercise, prove that a reducible Coxeter group is the
direct product of the Coxeter groups given by the connected components of the graph.

The rank of (𝑊,𝑆) (or just𝑊 , when 𝑆 is understood) is |𝑆 |.

In the following, we’ll restrict our focus to the world of finite Coxeter groups. We’ll also use
subscripts on our groups to denote the rank of the Coxeter system.
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Theorem 2.7 (Coxeter, 1935). The following3 is a classification of the finite irreducible Coxeter
groups:
(1) 𝐴𝑛 (a.k.a., 𝑆𝑛+1)
(2) 𝐵𝑛
(3) 𝐷𝑛
(4) 𝐸6
(5) 𝐸7
(6) 𝐸8
(7 ) 𝐹4
(8) 𝐺2 (a.k.a., 𝐼2(6))
(9) 𝐻3
(10) 𝐻4
(11) 𝐼2(𝑚).
The following are their Coxeter graphs:

Often, when proving results about finite irreducible Coxeter groups there are two main types
of arguments: one can prove things case by case, for each type, or one’s proof can be type uni-
form—where one’s arguments do not depend on the type of the Coxeter group.

2.3. Reduced Words. Let (𝑊,𝑆) be a Coxeter system. Every element 𝑤 ∈𝑊 can be written as
a product of simple generators. A natural question is the following: how can we write𝑤 ∈𝑊 as
a product of simple reflections using the fewest simples possible?

Definition 2.8. A reduced word (also a reduced decomposition or a reduced expression) for 𝑤 is a
word over 𝑆 that represents𝑤 and uses the minimum possible number of simple generators. The
minimum number of simples is called the length of𝑤 and is denoted ℓ (𝑤).

Lemma 2.9. For𝑤 ∈𝑊 and 𝑠 ∈ 𝑆 , we have ℓ (𝑠𝑤) = ℓ (𝑤) ± 1.

Proof. Define amap𝑊 → {1,−1} ≃ ℤ/2ℤ by𝑤 ↦→ (−1)ℓ (𝑤) . This map is a group homomorphism
(prove this as an exercise, or read the book!), so

(−1)ℓ (𝑠𝑤) = (−1)ℓ (𝑤) (−1)ℓ (𝑤) = (−1)ℓ (𝑤)+1.

3The reason for writing 𝐺2 separately, even though 𝐺2 ≃ 𝐼2 (6), is that 𝐺2 appears as the Weyl group of the root
system of a semisimple Lie algebra. The connection to Lie algebras is also the reason that the notation 𝐶𝑛 is not
used.
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It follows that ℓ (𝑠𝑤) ≡ ℓ (𝑤)+1 mod 2, but ℓ (𝑠𝑤) ≤ ℓ (𝑤)+1. Similarly, ℓ (𝑤) = ℓ (𝑠𝑠𝑤) ≤ ℓ (𝑠𝑤)+1,
forcing ℓ (𝑠𝑤) ≥ ℓ (𝑤) − 1. □

Example 2.10. In 𝑆3, we have
Element Reduced Word Length
123 ∅ 0
132 𝑠2 1
213 𝑠1 1
312 𝑠2𝑠1 2
231 𝑠1𝑠2 2
321 𝑠1𝑠2𝑠1 = 𝑠2𝑠1𝑠2 3

3. Tuesday September 12

3.1. More about reduced words; Matsumoto’s Theorem. A word over 𝑆 is a finite sequence
of elements of 𝑆 . A word representing 𝑤 ∈ 𝑊 is reduced if it has the minimum possible length.
This length of𝑤 is the length of the reduced word and is denoted ℓ (𝑤). Recall Example 2.10.

A nil move deletes some 𝑠𝑠 in a word. A braid move replaces (𝑠𝑠′)𝑚(𝑠,𝑠′) = 𝑠𝑠′𝑠𝑠′ · · · with
(𝑠′𝑠)𝑚(𝑠,𝑠′) = 𝑠′𝑠𝑠′𝑠 · · · .

Theorem 3.1 (Matsumoto’s Theorem, or Tits Lemma). Any word can be transformed into a re-
duced word using only nil moves and braid moves.

We’ll see how all of this works in the symmetric group.

Theorem 3.2. For𝑤 ∈ 𝑆𝑛 , we have ℓ (𝑤) = inv(𝑤).

Proof. We induct on inv(𝑤). Let 𝑠𝑖1 · · · 𝑠𝑖𝑘 be a reduced word for𝑤 , and let𝑢 𝑗 = 𝑠𝑖1 · · · 𝑠𝑖 𝑗 . Note that
𝑢 𝑗 is obtained from𝑢 𝑗−1 by reversing two adjacent numbers. It follows that inv(𝑢 𝑗 ) ≤ inv(𝑢 𝑗−1)+1.
So inv(𝑤) = inv(𝑢𝑘) ≤ 𝑘 = ℓ (𝑤).

Now, for the reverse inequality: let 𝑟 be a descent of 𝑤 . Let 𝑣 = 𝑤𝑠𝑟 , and note that inv(𝑣) =
inv(𝑤) − 1. By the inductive hypothesis, ℓ (𝑣) = inv(𝑣), implying

ℓ (𝑤) = ℓ (𝑣𝑠𝑟 ) ≤ ℓ (𝑣) + 1 = inv(𝑣) + 1 = inv(𝑤)
as desired. □

A reflection in𝑊 is an element that is conjugate to a simple reflection. Often, we will use 𝑇
to denote the set of reflections in𝑊 , i.e., 𝑇 = {𝑤𝑠𝑤−1 | 𝑠 ∈ 𝑆, 𝑤 ∈𝑊 }. In 𝑆𝑛 , a reflection is just
a transposition.4 Let 𝑇𝐿 (𝑤) = {𝑡 ∈ 𝑇 | ℓ (𝑡𝑤) < ℓ (𝑤)}; similarly, let 𝑇𝑅 (𝑤) = {𝑡 ∈ 𝑇 | ℓ (𝑤𝑡) <

ℓ (𝑤)}. We call 𝑇𝐿 (𝑤) and 𝑇𝑅 (𝑤) left and right inversions of𝑤 , respectively.

Example 3.3. Consider 𝑆𝑛 , and suppose 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. For 𝑤 ∈ 𝑆𝑛 , we have (𝑖 𝑗) ∈ 𝑇𝐿 (𝑤) if and
only if𝑤−1(𝑖) > 𝑤−1( 𝑗). Similarly, (𝑖 𝑗) ∈ 𝑇𝑅 (𝑤) if and only if𝑤 (𝑖) > 𝑤 ( 𝑗).

Remark 3.4. For any 𝑤 ∈ 𝑊 , we have ℓ (𝑤) = ℓ (𝑤−1). Hence 𝑇𝐿 (𝑤) = 𝑇𝑅 (𝑤−1). That is,
ℓ (𝑡𝑤) < ℓ (𝑤) if and only if ℓ (𝑤−1𝑡) < ℓ (𝑤−1).

Theorem 3.5 (Strong Exchange Property). Suppose 𝑤 = 𝑠1 · · · 𝑠𝑘 for some 𝑠1, . . . , 𝑠𝑘 ∈ 𝑆 . For
𝑡 ∈ 𝑇𝐿 (𝑤), we have 𝑡𝑤 = 𝑠1 · · · 𝑠𝑖 · · · 𝑠𝑘 for some 𝑖 , where the hat-over-an-element notation indicates
that this element should be deleted.
4In 𝑆𝑛 , the conjugacy class of 𝜎 ∈ 𝑆𝑛 is the set of those elements with the same cycle type.
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Example 3.6. We illustrate the theorem using an example. Consider 2431 ∈ 𝑆4. Then 𝑠1𝑠3𝑠2𝑠3 is a
reduced word for 2431. Let 𝑡 = (14) ∈ 𝑇𝐿 (2431), and note that 𝑡𝑤 = 2134 = 𝑠1 = 𝑠1𝑠3𝑠2𝑠3 = 𝑠1𝑠3𝑠3.

Corollary 3.7. Let 𝑠1 · · · 𝑠𝑘 be a reduced word for𝑤 ∈𝑊 . Then

𝑇𝐿 (𝑤) = {𝑠1, 𝑠1𝑠2𝑠1, 𝑠1𝑠2𝑠3𝑠2𝑠1, · · · , 𝑠1𝑠2 · · · 𝑠𝑘−1𝑠𝑘𝑠𝑘−1 · · · 𝑠2𝑠1}.

Proof. If 𝑡 ∈ 𝑇𝐿 (𝑤), then 𝑡𝑤 = 𝑠1 · · · 𝑠𝑖 · · · 𝑠𝑘 . Rewriting this gives us 𝑡𝑠1 · · · 𝑠𝑖𝑠𝑖+1 · · · 𝑠𝑘 = 𝑠1 · · · 𝑠𝑖−1𝑠𝑖+1 · · · 𝑠𝑘 .
Hence, 𝑡𝑠1 · · · 𝑠𝑖 = 𝑠1 · · · 𝑠𝑖−1, forcing 𝑡 = 𝑠1 · · · 𝑠𝑖−1𝑠𝑖𝑠𝑖−1 · · · 𝑠1.

For the converse, if 𝑡 = 𝑠1 · · · 𝑠𝑖−1𝑠𝑖𝑠𝑖−1 · · · 𝑠1, then 𝑡𝑤 = 𝑠1 · · · 𝑠𝑖 · · · 𝑠𝑘 , so ℓ (𝑡𝑤) < ℓ (𝑤), telling
us that 𝑡 ∈ 𝑇𝐿 (𝑤). □

A consequence of the above is that |𝑇𝐿 (𝑤) | = |𝑇𝑅 (𝑤) | = ℓ (𝑤).
Let 𝐷𝐿 (𝑤) = 𝑇𝐿 (𝑤) ∩ 𝑆 and 𝐷𝑅 (𝑤) = 𝑇𝑅 (𝑤) ∩ 𝑆 . The set 𝐷𝐿 (𝑤) are called the left descents of

𝑤 (similarly 𝐷𝑅 (𝑤) are the right descents).

Example 3.8. A right descent of 𝑤 ∈ 𝑆𝑛 is a simple transposition 𝑠𝑖 such that ℓ (𝑤𝑠𝑖) < ℓ (𝑤),
i.e., inv(𝑤𝑠𝑖) < inv(𝑤). Thus, 𝐷𝑅 (𝑤) = {𝑠𝑖 ∈ 𝑆 | 𝑤 (𝑖) > 𝑤 (𝑖 + 1)}. Similarly, 𝐷𝐿 (𝑤) = {𝑠𝑖 ∈
𝑆 | 𝑤−1(𝑖) > 𝑤−1(𝑖 + 1)}.

Theorem 3.9 (Deletion Property). If 𝑤 = 𝑠1 · · · 𝑠𝑘 , where 𝑘 > ℓ (𝑤), then 𝑤 = 𝑠1 · · · 𝑠𝑖 · · · 𝑠 𝑗 · · · 𝑠𝑘
for some 𝑖 and 𝑗 .

Proof. Choose 𝑖maximal so that 𝑠𝑖 · · · 𝑠𝑘 is not reduced. Then 𝑠𝑖+1 · · · 𝑠𝑘 is reduced, so ℓ (𝑠𝑖+1 · · · 𝑠𝑘) =
𝑘 − 𝑖 , and ℓ (𝑠1 · · · 𝑠𝑘) < 𝑘 − 𝑖 + 1. It follows that ℓ (𝑠𝑖 · · · 𝑠𝑘) < ℓ (𝑠𝑖+1 · · · 𝑠𝑘). Thus, 𝑠𝑖 · · · 𝑠𝑘 =

𝑠𝑖+1 · · · 𝑠 𝑗 · · · 𝑠𝑘 for some 𝑗 . Then𝑤 = 𝑠1 · · · 𝑠𝑖−1𝑠𝑖 · · · 𝑠𝑘 = 𝑠1 · · · 𝑠𝑖−1𝑠𝑖+1 · · · 𝑠 𝑗 · · · 𝑠𝑘 . □

3.2. Posets.

Definition 3.10. A poset (partially ordered set) is a pair (𝑃, ≤) such that 𝑃 is a set and ≤ is a
relation on 𝑃 that is:
(1) reflexive: 𝑥 ≤ 𝑥 for all 𝑥 ∈ 𝑃 ;
(2) antisymmetric: 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 implies 𝑥 = 𝑦 for 𝑥,𝑦 ∈ 𝑃 ;
(3) transitive: 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧 for all 𝑥,𝑦, 𝑧 ∈ 𝑃 .5

We write 𝑥 < 𝑦 if 𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦. When the partial order on 𝑃 is understood, we will drop the
cumbersome notation (𝑃, ≤) for our poset and simply refer to the poset as 𝑃 . A chain is a totally
ordered set (i.e., a chain is a poset where all elements are comparable).

Let 𝑥,𝑦 ∈ 𝑃 with 𝑥 ≤ 𝑦. The interval between 𝑥 and 𝑦 is [𝑥,𝑦] = {𝑧 ∈ 𝑃 | 𝑥 ≤ 𝑧 ≤ 𝑦}. We say
𝑦 covers 𝑥 if #[𝑥,𝑦] = 2; in this case, we write 𝑥 ⋖ 𝑦.

The Hasse diagram of 𝑃 is a graphical representation of 𝑃 . The diagram itself is the graph
representing elements of 𝑃 as vertices with edges given by cover relations (i.e., 𝑥 ⋖ 𝑦 implies the
existence of an edge between 𝑥 and 𝑦). We orient the graph in the plane so that if 𝑥 ≤ 𝑦, then the
vertex representing 𝑥 is drawn below that of 𝑦.

Example 3.11. Consider a chain with 4 elements. Its Hasse diagram looks like

5My favorite intuitive way to explain posets to people who don’t study math is by explaining the following example
that everyone is already familiar with. Fruit forms a poset. For example, oranges are better than lemons (most people,
maybe except Colin, don’t eat lemons in the same way they eat oranges), but apples and oranges can’t be compared!
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Example 3.12. Here’s another poset and its Hasse diagram:

4. Thursday September 14

4.1. Posets. Eliot’s Fruit Order: the underlying set is {apple, orange, lemon}, with order rela-
tions orange≥lemon, apple≥lemon, but apples and oranges can’t be compared.

AppleOrange

Lemon

We’ll use this example to define the dual of a poset.

Definition 4.1. The dual of a poset (𝑃, ≤) is the poset (𝑃, ≤′) such that 𝑥 ≤ 𝑦 if and only if
𝑦 ≤′ 𝑥 .

Colin’s Fruit Order: the underlying set of fruit is the same, but the order relations are lemon≥orange
and lemon≥apple, but again apples and oranges can’t be compared. Note that Colin’s Fruit order
is dual to Eliot’s.

AppleOrange

Lemon

Here’s another real-world example of a poset. Given a person 𝐴, we say that 𝐴 < 𝐵 if 𝐴 is a
descendant of 𝐵.

Marc Susan

Colin Jack Juliette

An antichain of size 𝑛 is a poset of size 𝑛 in which any two elements are incomparable.

Example 4.2. For 𝑛 = 4, the Hasse diagram of an antichain looks like:

The 𝑛th Boolean lattice (we’ll discuss lattices later) is the collection of subsets of [𝑛] ordered
by containment. In other words, 𝐼 ≤ 𝐽 if and only if 𝐼 ⊆ 𝐽 .
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Example 4.3. The graphic below depicts the boolean lattice for 𝑛 = 3:

We illustrate the definition of an interval in the poset in the figure below. Make figure.
A poset 𝑃 is graded if there is a rank function rk : 𝑃 → ℤ such that rk(𝑦) = rk(𝑥) + 1

whenever 𝑥 ⋖ 𝑦.

Example 4.4. The following poset is not graded (try constructing a rank function), while the
Boolean lattice is (do you see what the rank function on the Boolean lattice is?).

4.2. The Bruhat Order. The Bruhat order is a partial order that we will define on a Coxeter
group. Let (𝑊,𝑆) denote a Coxeter system, and let 𝑇 = {𝑤𝑠𝑤−1 | 𝑠 ∈ 𝑆,𝑤 ∈ 𝑊 } be the set
of reflections. The Bruhat order on𝑊 is the partial order in which 𝑢 ≤ 𝑣 whenever there exist
reflections 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇 such that 𝑣 = 𝑢𝑡1 · · · 𝑡𝑘 and ℓ (𝑢𝑡1 · · · 𝑡𝑖−1) < ℓ (𝑢𝑡1 · · · 𝑡𝑖) for all 1 ≤ 𝑖 ≤ 𝑘 .

Example 4.5. Consider 𝐼2(5), the dihedral group of order 10. If {𝑟, 𝑠} is the set of simple reflec-
tions, recall the Coxeter graph of 𝐼2(5) is the graph with an edge between 𝑟 and 𝑠 with label 5.
The following depicts the weak Bruhat order on 𝐼2(5). Add figure.

We have 𝑟𝑠 = 𝑠 (𝑠𝑟𝑠), so 𝑟𝑠 ≥ 𝑠 and 𝑟𝑠 ≥ 𝑟 ; we can similarly justify 𝑠𝑟 ≥ 𝑟 and 𝑠𝑟 ≥ 𝑠 . We can
use analogous arguments to justify the rest of the picture.

Remark 4.6. The Bruhat order on 𝑆𝑛 corresponds to containment of Schubert varieties (i.e., the
Bruhat order is not some random order on𝑊 we just pulled out of thin air—it actually comes
from geometry).

Remark 4.7. There is a unique minimal element of𝑊 with respect to the Bruhat order—the
identity 𝑒 . (Justify this to yourself!)

Next, we’ll study the Bruhat order on 𝑆𝑛 . For 𝑥 ∈ 𝑆𝑛 and 𝑖, 𝑗 ∈ [𝑛], let 𝑥 [𝑖, 𝑗] = #{𝛼 ∈
[𝑖] | 𝑥 (𝛼) ≥ 𝑗}. We can visualize this in the following way. For a permutation 𝜎 ∈ 𝑆𝑛 , we can
plot (𝑖, 𝜎 (𝑖)) in ℤ2. Then 𝑥 [𝑖, 𝑗] is the number of dots in the box enclosed by 𝑦 ≥ 𝑗 and 𝑥 ≤ 𝑖 . For
example, if 𝑥 = 416352 ∈ 𝑆6, its plot is given by the red dots in the figure below. Moreover we see
that 𝑥 [5, 3] = 4, since there are 4 dots in the region enclosed by the blue lines.
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Theorem 4.8. For 𝑥,𝑦 ∈ 𝑆𝑛 , we have 𝑥 ≤ 𝑦 if and only if 𝑥 [𝑖, 𝑗] ≤ 𝑦 [𝑖, 𝑗] for all 𝑖, 𝑗 ∈ [𝑛].
Proof. Suppose 𝑦 = 𝑥𝑡 for some 𝑡 ∈ 𝑇 with ℓ (𝑥) < ℓ (𝑦). Let 𝑡 = (𝑎 𝑏) for 𝑎 < 𝑏. Then we have
𝑥 (𝑎) < 𝑥 (𝑏), and it is not so difficult ot see that 𝑥 [𝑖, 𝑗] ≤ 𝑦 [𝑖, 𝑗] for all 𝑖, 𝑗 ∈ [𝑛]. Thus, this is true
whenever 𝑥 ≤ 𝑦. □

Example 4.9. The Bruhat order on 𝑆𝑛 for 𝑛 = 3, 4 is shown in the following diagram:

A subword of a word 𝑠1 · · · 𝑠𝑘 is a word 𝑠𝑖1 · · · 𝑠𝑖𝑚 , where 1 ≤ 𝑖1 < · · · < 𝑖𝑚 ≤ 𝑘 .
Theorem 4.10 (Subword Property). For 𝑢, 𝑣 ∈𝑊 , the following are equivalent:
(1) 𝑢 ≤ 𝑣 ;
(2) every reduced word for 𝑣 contains a reduced word for 𝑢 as a subword;
(3) some reduced word for 𝑣 contains a reduced word for 𝑢 as a subword;

We omit the proof and instead refer the reader to the textbook.
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Corollary 4.11. For 𝑢, 𝑣 ∈𝑊 , we have 𝑢 ≤ 𝑣 if and only if there exist reflections 𝑡1, . . . , 𝑡𝑘 such that
𝑣 = 𝑡𝑘 · · · 𝑡1𝑢 and ℓ (𝑡𝑖 · · · 𝑡1𝑢) > ℓ (𝑡𝑖−1 · · · 𝑡1𝑢) for all 1 ≤ 𝑖 ≤ 𝑘 . Hence, the map 𝑤 ↦→ 𝑤−1 is an
automorphism of the Bruhat order.6

Corollary 4.12. It follows that #[𝑒,𝑤] ≤ 2ℓ (𝑤) under the Bruhat order. (This bound is tight—
consider the Boolean lattice.)

Theorem 4.13 (Chain Property). If 𝑢 < 𝑣 in the Bruhat order, then there is a chain 𝑢 = 𝑥0 < 𝑥1 <

· · · < 𝑥𝑘 = 𝑣 with ℓ (𝑥𝑖) = ℓ (𝑥𝑖−1) + 1 for all 1 ≤ 𝑖 ≤ 𝑘 . So, 𝑢 ⋖ 𝑣 if and only if ℓ (𝑣) = ℓ (𝑢) + 1 and
𝑣 = 𝑢𝑡 for some 𝑡 ∈ 𝑇 . Therefore, the Bruhat order is in fact a graded poset with rank function given
by length.

5. Tuesday September 19

5.1. Properties of the Bruhat Order.

Remark 5.1. For 𝑢, 𝑣 ∈𝑊 , we have 𝑢 ≤ 𝑣 (in the Bruhat order) if and only if some reduced word
for 𝑣 contains a word representing 𝑢.

Proof. The Deletion Property (Theorem 3.9) does the trick. □

Lemma 5.2. Suppose 𝑢,𝑤 ∈𝑊 are distinct, and let 𝑠1, . . . , 𝑠𝑞 be a reduced word for𝑤 that contains
a reduced word for 𝑢 as a subword. Then there exists some 𝑣 ∈𝑊 such that
(1) 𝑢 < 𝑣 ;
(2) ℓ (𝑣) = ℓ (𝑢) + 1;
(3) some reduced word for 𝑣 is a subword of 𝑠1 · · · 𝑠2.

Proof. Of all reduced words 𝑠1 · · · 𝑠𝑖1 · · · 𝑠𝑖𝑘 · · · 𝑠𝑞 for 𝑢, choose one such that 𝑖𝑘 is minimal. Let
𝑡 = 𝑠𝑞𝑠𝑞−1 · · · 𝑠𝑖𝑘 · · · 𝑠𝑞−1𝑠𝑞 . Then 𝑢𝑡 = 𝑠1 · · · 𝑠𝑖1 · · · 𝑠𝑖𝑘−1 · · · 𝑠𝑖𝑘 · · · 𝑠𝑞 , so ℓ (𝑢𝑡) ≤ ℓ (𝑢) + 1. We claim
that this inequality must be strict. Assuming that this is true, then setting 𝑣 = 𝑢𝑡 proves the
lemma.

To prove that the inequality is strict, assume for a contradiction that ℓ (𝑢) > ℓ (𝑢𝑡). By the
Strong Exchange Property (Theorem 3.5), either

𝑡 = 𝑠𝑞𝑠𝑞−1 · · · 𝑠𝑝 · · · 𝑠𝑞−1𝑠𝑞

for some 𝑝 > 𝑖𝑘 or
𝑡 = 𝑠𝑞 · · · 𝑠𝑖𝑘 · · · 𝑠𝑖 𝑗 · · · 𝑠𝑟 · · · 𝑠𝑖 𝑗 · · · 𝑠𝑖𝑘 · · · 𝑠𝑞

for some 𝑟 < 𝑖𝑘 with 𝑟 ≠ 𝑖 𝑗 .
Case 1:
𝑤 = 𝑤𝑡2 = 𝑠1 · · · 𝑠𝑞 (𝑠𝑞𝑠𝑞−1 · · · 𝑠𝑝 · · · 𝑠𝑞−1𝑠𝑞) (𝑠𝑞𝑠𝑞−1 · · · 𝑠𝑝 · · · 𝑠𝑞−1𝑠𝑞) = 𝑠1 · · · 𝑠𝑖𝑘 · · · 𝑠𝑝 · · · 𝑠𝑞,

but this is ridiculous, since ℓ (𝑤) = 𝑞.
Case 2:
𝑢 = 𝑢𝑡2 = (𝑠1 · · · 𝑠𝑖1 · · · 𝑠𝑖𝑘 · · · 𝑠𝑞) (𝑠𝑞 · · · 𝑠𝑖𝑘 · · · 𝑠𝑖 𝑗 · · · 𝑠𝑟 · · · 𝑠𝑖 𝑗 · · · 𝑠𝑖𝑘 · · · 𝑠𝑞) (𝑠1 · · · 𝑠𝑖𝑘 · · · 𝑠𝑞)

= 𝑠1 · · · 𝑠𝑖1 · · · 𝑠𝑟 · · · 𝑠𝑖 𝑗 · · · 𝑠𝑖𝑘 · · · 𝑠𝑞,
which contradicts the minimality of 𝑖𝑘 . □

6By automorphism of a poset wemean the following. Given two posets (𝑃, ≤𝑃 ) and (𝑄, ≤𝑄 ), an isomorphism between
𝑃 and𝑄 is a bijective map 𝜙 : 𝑃 → 𝑄 such that 𝑥 ≤𝑃 𝑦 if and only if 𝜙 (𝑥) ≤𝑄 𝜙 (𝑦). An automorphism of a poset 𝑃 is
simply a isomorphism from 𝑃 to itself.
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Theorem 5.3 (The Lifting Property). Suppose 𝑢 < 𝑤 and 𝑠 ∈ 𝐷𝐿 (𝑤) \ 𝐷𝐿 (𝑢). Then 𝑢 ≤ 𝑠𝑤 and
𝑠𝑢 ≤ 𝑤 . 7

Proof. Let 𝑠1 · · · 𝑠𝑞 be a reduced word for 𝑠𝑤 . Then 𝑠𝑠1 · · · 𝑠𝑞 is a reduced word for 𝑤 . By the
Subword Property (Theorem 4.10), there exists a subword 𝑠𝑖1 · · · 𝑠𝑖𝑘 of 𝑠𝑠1 · · · 𝑠𝑞 that is a reduced
word for 𝑢. Since 𝑠 ∉ 𝐷𝐿 (𝑢), we have that 𝑠𝑖1 ≠ 𝑠 . Moreover, 𝑠𝑠𝑖1 · · · 𝑠𝑖𝑘 is a reduced word for 𝑠𝑢
and it is a subword of 𝑠𝑠1 · · · 𝑠𝑞 . □

Let 𝑃 be a poset. A lower bound (resp., upper bound) for 𝑥,𝑦 ∈ 𝑃 is an element 𝑧 ∈ 𝑃 such that
𝑧 ≤ 𝑥 and 𝑧 ≤ 𝑦 (resp., 𝑧 ≥ 𝑥 and 𝑧 ≥ 𝑦).
Proposition 5.4. Any elements 𝑢,𝑤 ∈𝑊 have a lower bound and an upper bound in Bruhat order.

Proof. The identity is a lower bound for both 𝑢 and 𝑤 . To find an upper bound, we induct on
ℓ (𝑢) + ℓ (𝑤). If the ℓ (𝑢) + ℓ (𝑤) = 0, then 𝑢 = 𝑤 = 𝑒 can be upper-bounded by 𝑒 . Assume that
ℓ (𝑢)+ℓ (𝑤) > 0, and without loss of generality, assume that ℓ (𝑢) > 0. Let 𝑠 ∈ 𝐷𝐿 (𝑢). By induction,
there exist 𝑥 ∈𝑊 such that 𝑥 ≥ 𝑠𝑢 and 𝑥 ≥ 𝑤 . If 𝑠 ∈ 𝐷𝐿 (𝑥), then 𝑢 ≤ 𝑥 by the Lifting Property,
so 𝑥 is an upper bound for 𝑢 and𝑤 . If 𝑠 ∉ 𝐷𝐿 (𝑥), then 𝑢 ≤ 𝑠𝑥 by the Lifting Property, so 𝑠𝑥 is an
upper bound for 𝑢 and𝑤 (we have𝑤 ≤ 𝑥 ≤ 𝑠𝑥 ). □

When𝑊 is finite, we have the following proposition:

Proposition 5.5. If𝑊 is finite, then there exists 𝑤0 ∈ 𝑊 such that 𝑤 ≤ 𝑤0 for all 𝑤 ∈ 𝑊 . Also,
𝐷𝐿 (𝑤0) = 𝑆 .

Moreover, if there exists 𝑥 ∈𝑊 such that 𝐷𝐿 (𝑥) = 𝑆 , then𝑊 is finite and 𝑥 = 𝑤0.

Proof. For the first claim, note that the Bruhat order cannot have multiple maximal elements if
𝑊 is finite, since they would have to have an upper bound. If 𝐷𝐿 (𝑤0) ≠ 𝑆 , then there exists 𝑠 ∈ 𝑆
such that 𝑠𝑤0 ≥ 𝑤0 contradicting the maximality of𝑤0.

For the second statement, suppose that 𝐷𝐿 (𝑥) = 𝑆 . We will show that 𝑢 ≤ 𝑥 for all 𝑢 ∈ 𝑊
by induction on ℓ (𝑢). If ℓ (𝑢) = 0, then 𝑢 = 𝑒, so 𝑢 ≤ 𝑥 . Assume ℓ (𝑢) > 0. Let 𝑠 ∈ 𝐷𝐿 (𝑢). Then
𝑠𝑢 < 𝑢 so 𝑠𝑢 ≤ 𝑥 . But since 𝑠 ∈ 𝐷𝐿 (𝑥), the Lifting Property says that 𝑢 ≤ 𝑥 . Then𝑊 = [𝑒, 𝑥] is
finite (recall that #[𝑒, 𝑥] ≤ 2ℓ (𝑥)). □

Often,𝑤0 is called the long element.

5.2. Properties of the Long Element. Here are some facts about the long element:
(1) 𝑤2

0 = 𝑒;
(2) ℓ (𝑤𝑤0) = ℓ (𝑤0𝑤) = ℓ (𝑤0) − ℓ (𝑤);
(3) ℓ (𝑤0𝑤𝑤0) = ℓ (𝑤);
(4) 𝑇𝐿 (𝑤𝑤0) = 𝑇 \𝑇𝐿 (𝑤);
(5) ℓ (𝑤0) = |𝑇 |.

Actually, the maps 𝑥 ↦→ 𝑥𝑤0 and 𝑥 ↦→ 𝑤0𝑥 are anti-automorphisms of the Bruhat order (i.e., 𝑥 ≤ 𝑦
if and only if 𝑥𝑤0 ≥ 𝑦𝑤0 if and only if 𝑤0𝑥 ≥ 𝑤0𝑦), so the map 𝑥 ↦→ 𝑤0𝑥𝑤0 is an automorphism
of the Bruhat order.

In 𝑆𝑛 , we have that 𝑤0 = 𝑛(𝑛 − 1) · · · 321. Note that 𝑥𝑤0 is the reverse of 𝑥 , and 𝑤0𝑥 is the
complement of 𝑥 . Lastly,𝑤0𝑥𝑤0 is the reverse complement of 𝑥 .

Example 5.6. Consider 𝑥 = 416352 ∈ 𝑆6. Note that
(1) 𝑥𝑤0 = 253614;

7If you go to the gym, this should be your favorite theorem.
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(2) 𝑤0𝑥 = 361425;
(3) 𝑤0𝑥𝑤0 = 524163.

The elements covering 𝑒 in the Bruhat order are simple reflections, so the map taking 𝑠 ↦→
𝑤0𝑠𝑤0 for 𝑠 ∈ 𝑆 is an automorphism of the Coxeter graph.

6. Thursday September 21

6.1. More on the Long Element. Recall that the elements covering 𝑒 in the Bruhat order are
simple reflections, so the map taking 𝑠 ↦→ 𝑤0𝑠𝑤0 for 𝑠 ∈ 𝑆 is an automorphism of the Coxeter
graph. Hence, the map 𝑠 ↦→ 𝑤0𝑠𝑤0 for 𝑠 ∈ 𝑆 is an automorphism of the Coxeter graph (i.e., a
bijective map preserving adjacencies and labels on the edges).

Example 6.1. Consider 𝑆𝑛 . The Coxeter graph is the path graph on 𝑛 − 1 vertices, where 𝑠𝑖 and
𝑠𝑖+1 are adjacent for 1 ≤ 𝑖 < 𝑛 − 1. As an exercise, check that𝑤0𝑠𝑖𝑤0 = 𝑠𝑛−𝑖 .

Example 6.2. Consider 𝐵𝑛 (for 𝑛 ≥ 3). Here we see that 𝑤0𝑠𝑖𝑤0 = 𝑠𝑖 , i.e., the automorphism
induced by the Coxeter graph is the identity.

Example 6.3. Consider 𝐷𝑛 for 𝑛 ≥ 3. Here, we have𝑤0𝑠𝑖𝑤0 = 𝑠𝑖 for 2 ≤ 𝑖 ≤ 𝑛 − 1. We also have

𝑤0𝑠0𝑤0 =

{
𝑠0 if 𝑛 is even;
𝑠1 if 𝑛 is odd.

and 𝑤0𝑠1𝑤0 =

{
𝑠1 if 𝑛 is even;
𝑠0 if 𝑛 is odd.

Every automorphism of the Coxeter graph yields an automorphism of the Coxeter group, and
an automorphism of Bruhat order on𝑊 .

Theorem 6.4. Suppose (𝑊,𝑆) is irreducible and |𝑆 | ≥ 3. If 𝜑 : 𝑊 → 𝑊 is an automorphism of
Bruhat order fixing all of the simple reflections (i.e., 𝜑 (𝑠) = 𝑠 for all 𝑠 ∈ 𝑆), then either 𝜑 (𝑥) = 𝑥 for
all 𝑥 ∈𝑊 or 𝜑 (𝑥) = 𝑥−1 for all 𝑥 ∈𝑊 .

6.2. Parabolic Subgroups and Quotients. Let 𝐽 ⊂ 𝑆 be a subset of simple reflections, and let
𝑊𝐽 be the subgroup of𝑊 generated by 𝐽 . This is called a (standard)8 parabolic subgroup of𝑊 .

Proposition 6.5. Let𝑊𝐽 be a parabolic subgroup of𝑊 . Then
(1) (𝑊𝐽 , 𝐽 ) is a Coxeter system;
(2) for all𝑤 ∈𝑊𝐽 , we have ℓ𝐽 (𝑤) = ℓ (𝑤);
(3) 𝑊𝐼 ∩𝑊𝐽 =𝑊𝐼∩𝐽 ;
(4) ⟨𝑊𝐼 ∪𝑊𝐽 ⟩ =𝑊𝐼∪𝐽 ;
(5) 𝑊𝐼 =𝑊𝐽 if and only if 𝐼 = 𝐽 .

If𝑊𝐽 is finite, it has a long element, which we will denote by𝑤0(𝐽 ).
Now, let 𝐷 𝐽

𝐼
= {𝑤 ∈𝑊 | 𝐼 ⊂ 𝐷𝑅 (𝑤) ⊂ 𝐽 }; let𝑊 𝐽 = 𝐷

𝑆\𝐽
∅ ; and let 𝐷𝐼 = 𝐷 𝐼𝐼 .

Proposition 6.6. Every𝑤 ∈𝑊 has a unique factorization𝑤 = 𝑤 𝐽𝑤 𝐽 with𝑤 𝐽 ∈𝑊 𝐽 and𝑤 𝐽 ∈𝑊𝐽 .
Moreover, ℓ (𝑤) = ℓ (𝑤 𝐽 ) + ℓ (𝑤 𝐽 ).

Example 6.7. Let𝑊 = 𝑆9 and 𝐽 = {𝑠1, 𝑠2, 𝑠4, 𝑠7}. Let 𝑤 = 426915783. We have𝑊 𝐽 = 246195783
and𝑤 𝐽 = 213546789.
8Some define parabolic subgroups to be the subgroups conjugate to standard parabolic subgroups (i.e., parabolic
subgroups as we have defined them above).
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Corollary 6.8. Every coset 𝑤𝑊𝐽 has a unique representative of minimum length (and it is 𝑤 𝐽 ).
These minimum-length coset representatives are the elements of𝑊 𝐽 .

Proof. If 𝑢𝑊𝐽 = 𝑤𝑊𝐽 , then 𝑤 = 𝑢𝑣 for some 𝑣 ∈ 𝑊𝐽 . Write 𝑢 = 𝑢 𝐽𝑢 𝐽 and 𝑢 = 𝑤 𝐽𝑤 𝐽 . Then
𝑤 = 𝑤 𝐽𝑤 𝐽 = 𝑢

𝐽𝑢 𝐽𝑣 . So𝑤 𝐽 = 𝑢 𝐽 by the uniqueness of the factorization from Proposition 6.6. □

Corollary 6.9. If𝑊𝐽 is finite, then 𝑤𝑊𝐽 has a unique element of maximum length; it is 𝑤 𝐽𝑤0(𝐽 ).
These maximum-length coset representatives are the elements of 𝐷𝑆

𝐽
.

Example 6.10. Again let𝑊 = 𝑆9 with 𝐽 = {𝑠1, 𝑠2, 𝑠4, 𝑠7} and 𝑤 = 426915783. We have 𝑤0(𝐽 ) =
321 546879 and 𝑤 𝐽𝑤0(𝐽 ) = 642915873. Note that we can get 𝑤 𝐽𝑤0(𝐽 ) by “putting the things you
can” into descending order.

There are also mirrored versions of the objects defined above:

𝐽𝑊 = {𝑤 ∈𝑊 | 𝐷𝐿 (𝑤) ⊂ 𝑆 \ 𝐽 }

is the set of minimum-length coset representatives of right cosets of𝑊𝐽 . Every 𝑤 ∈ 𝑊 can be
factored uniquely as𝑤 = 𝑤 𝐽

𝐽𝑤 with𝑤 𝐽 ∈𝑊𝐽 and 𝐽𝑤 ∈ 𝐽𝑊 (not the same𝑤 𝐽 as before). (We get
this from {𝑤−1 | 𝑤 ∈𝑊𝐽 } =𝑊𝐽 and {𝑤−1 | 𝑤 ∈𝑊 𝐽 } = 𝐽𝑊 .)

We can restrict Bruhat order to𝑊 𝐽 to get an interesting poset, called a parabolic quotient.
Define 𝑃 𝐽 :𝑊 →𝑊 𝐽 by 𝑃 𝐽 (𝑤) = 𝑤 𝐽 , i.e., the minimum-length representative of𝑤𝑊𝐽 .

Proposition 6.11. We have that 𝑃 𝐽 is order-preserving. In other words,𝑢 ≤ 𝑣 if and only if 𝑃 𝐽 (𝑢) ≤
𝑃 𝐽 (𝑣).

Corollary 6.12. Any two elements of𝑊 𝐽 have an upper bound in the Bruhat order.

Proof. Let 𝑢, 𝑣 ∈ 𝑊 𝐽 . Find 𝑤 ∈ 𝑊 with 𝑢 ≤ 𝑤 and 𝑣 ≤ 𝑤 . Then 𝑢 = 𝑃 𝐽 (𝑢) ≤ 𝑃 𝐽 (𝑤) and
𝑣 = 𝑃 𝐽 (𝑣) ≤ 𝑃 𝐽 (𝑤). □

If𝑊 𝐽 is finite, then it has a maximal element𝑤 𝐽

0 .

Proposition 6.13. Suppose𝑊 is finite and 𝐽 ⊂ 𝑆 . The map 𝛼 : 𝑊 𝐽 → 𝑊 𝐽 defined by 𝛼 (𝑥) =

𝑤0𝑥𝑤0(𝐽 ) is an antiautomorphism of Bruhat order of𝑊 𝐽 .

Theorem 6.14. If 𝑢 < 𝑤 in𝑊 𝐽 , then there exist 𝑥0, 𝑥1, . . . , 𝑥𝑘 ∈𝑊 𝐽 with 𝑢 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑘 =
𝑤 and ℓ (𝑥𝑖) = ℓ (𝑥𝑖−1) + 1 for all 𝑖 .

Corollary 6.15. The Bruhat order on𝑊 𝐽 is graded.

6.3. Lattices. Let 𝑃 be a poset. For 𝑥,𝑦, 𝑧 ∈ 𝑃 , we say that 𝑧 is the greatest lower bound, or meet,
of 𝑥 and 𝑦 if 𝑧 is the unique maximal element of {𝑢 ∈ 𝑃 | 𝑢 ≤ 𝑥,𝑦}. Note that such an element
𝑧 need not exist; when it does, we denote it by 𝑥 ∧ 𝑦. The least upper bound, or join, is defined
dually and is denoted 𝑥 ∨ 𝑦.

Definition 6.16. A lattice is a poset 𝐿 such that any two elements 𝑥,𝑦 ∈ 𝐿 have a meet and a
join.

When working with lattices we can regard them as order-theoretic objects (i.e., as posets
with some additional properties) or as algebraic objects (i.e., we can think of ∧ and ∨ as algebraic
operations).
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Example 6.17. The Boolean lattice of subsets of [𝑛] ordered by containment is a lattice (recall
this from Example 4.3). Here, 𝑥 ∧ 𝑦 = 𝑥 ∩ 𝑦; similarly, 𝑥 ∨ 𝑦 = 𝑥 ∪ 𝑦.9

Example 6.18. The divisors of some positive integer𝑁 under divisibility is a lattice. Here, 𝑥∧𝑦 =

gcd(𝑥,𝑦), and 𝑥 ∨ 𝑦 = lcm(𝑥,𝑦). Note that the Boolean lattice on 2[𝑛] is the lattice of divisors of
the product of 𝑛 primes. For example, for 𝑁 = 12 we have

1

3 2

6

12

4

Example 6.19. The following is a nonexample of a lattice:

A lattice 𝐿 is called distributive if 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) for all 𝑥,𝑦, 𝑧, ∈ 𝐿.
Example 6.20. The following lattice is not distributive:

The following is also not distributive:

7. Tuesday September 26

7.1. More Lattices. Recall the definition of a distributive lattice: A lattice 𝐿 is called distributive
if 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) for all 𝑥,𝑦, 𝑧, ∈ 𝐿.
Example 7.1. The following lattices are not distributive. As an exercise, justify to yourself why
this is the case.
9Remembering this example is a good mnemonic for remembering that ∧ denotes the greatest lower bound and that
∨ denotes the least upper bound.
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Distributive lattices are not just natural from an algebraic viewpoint—distributivity is a nat-
ural property from an order-theoretic vantage point. Let 𝑃 be a poset. An order ideal of 𝑃 is a
subset 𝐼 ⊂ 𝑃 such that for all 𝑥,𝑦 ∈ 𝑃 , we have 𝑦 ∈ 𝐼 and 𝑥 ≤ 𝑦 imply 𝑥 ∈ 𝐼 . We say some
subset 𝑆 ⊂ 𝑃 generates an order ideal 𝐼 if 𝐼 is the smallest order ideal containing 𝑆 . An order
ideal generated by a single element is said to be principal. Let 𝐽 (𝑃) be the set of order ideals of
𝑃 , ordered by containment. Then 𝐽 (𝑃) is a poset, and the subposet given by the principal order
ideals is isomorphic to 𝑃 .

Example 7.2. Consider the poset 𝑃 on three elements that has a unique minimal element and is
not a chain. What is 𝐽 (𝑃)? Add picture later.

Theorem 7.3 (Fundamental Theorem of Finite Distributive Lattices; Birkhoff, 1937). If 𝑃 is a
finite poset, then 𝐽 (𝑃) is a distributive lattice. If 𝐿 is a finite distributive lattice, then there exists a
(unique) finite poset 𝑃 such that 𝐿 ≃ 𝐽 (𝑃).

This is a summary of the history of lattice theory due to Nathan Williams.

Example 7.4. Young’s Lattice is the graded lattice whose elements are partitions (viewed as
Young diagrams) andwhose order relations is given by containment (of Young diagrams). Young’s
Lattice is a distributive, infinite lattice.
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Let 𝐿 be a finite lattice. Every subset 𝑋 ⊂ 𝐿 has a meet, denoted
∧
𝑋 , and a join, denoted∨

𝑋 . So 𝐿 has a unique minimal element, which we denote by 0̂ =
∧
𝐿. Likewise, 𝐿 has a unique

maximal element, denoted 1̂ =
∨
𝐿.

Remark 7.5. Note that
∧{𝑥} = 𝑥 and

∨{𝑥} = 𝑥 . Moreover,
∧ ∅ = 1̂ and

∨ ∅ = 0̂.

An element 𝑗 of a lattice 𝐿 is join-irreducible if 𝑗 is not the join of a finite subset 𝑋 ⊂ 𝐿 with
𝑗 ∉ 𝑋 . A meet-irreducible element is defined dually.

In the lattice of divisors of 𝑁 , the join-irreducible elements are the powers of primes dividing
𝑁 . In Young’s Lattice, the join-irreducible elements are the rectangular-shaped Young diagrams.

Proposition 7.6. Every element of a finite lattice can be written as a join of some set of join-
irreducible elements.

Proof. Let 𝐿 be a finite lattice, and let 𝑥 ∈ 𝐿. If 𝑥 is join-irreducible, then we are done. Otherwise
𝑥 =

∨
𝑋 for some set 𝑋 ⊂ 𝐿 with 𝑥 ∉ 𝑋 . By induction, each element of 𝑋 is a join of some

join-irreducibles. Hence, so is 𝑥 . □

Proposition 7.7. If 𝑝𝛼 is a prime power that divides lcm(𝑚1, . . . ,𝑚𝑘), then 𝑝𝛼 |𝑚𝑖 for some 𝑖 .

7.2. Weak Order and Reduced Words. Let (𝑊,𝑆) be a Coxeter system. For 𝑢, 𝑣 ∈ 𝑊 , write
𝑢 ≤𝑅 𝑣 if there exists 𝑥 ∈𝑊 such that 𝑣 = 𝑢𝑥 and ℓ (𝑣) = ℓ (𝑢) + ℓ (𝑥). Equivalently, 𝑢 ≤𝑅 𝑣 if and
only if there exists a reduced word for 𝑣 that contains a reduced word for 𝑢 as a prefix. The order
≤𝑅 is called the right weak order.

Write 𝑢 ≤𝐿 𝑣 if there exists 𝑥 ∈ 𝑊 such that 𝑣 = 𝑥𝑢 and ℓ (𝑣) = ℓ (𝑥) + ℓ (𝑢). Equivalently,
𝑢 ≤𝐿 𝑣 if and only if there exists a reduced word for 𝑣 that contains a reduced word for 𝑢 as a
suffix. The order ≤𝐿 is called the left weak order.

Remark 7.8. The posets (𝑊, ≤𝑅) and (𝑊, ≤𝐿) are isomorphic via the map𝑤 ↦→ 𝑤−1.

Example 7.9. Consider𝑊 = 𝑆3:

https://media.tenor.com/r4F8Iw85WJAAAAAd/dont-hurt-me-im-too-weak.gif
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123 = 𝑒

213 = 𝑠1

231 = 𝑠1𝑠2

𝑠1𝑠2𝑠1 = 321 = 𝑠2𝑠1𝑠2

132 = 𝑠2

312 = 𝑠2𝑠1

Example 7.10. Consider the weak order on 𝐼2(4) with 𝑆 = {𝑠1, 𝑠2}.

𝑒

𝑠1

𝑠1𝑠2

𝑠1𝑠2𝑠1

𝑠1𝑠2𝑠1𝑠2 = 𝑤0 = 𝑠2𝑠1𝑠2𝑠1

𝑠2

𝑠2𝑠1

𝑠2𝑠1𝑠2

Example 7.11. Consider the weak order on 𝐼2(∞) with 𝑆 = {𝑠1, 𝑠2}.

𝑒

𝑠1

𝑠1𝑠2

𝑠1𝑠2𝑠1

𝑠1𝑠2𝑠1𝑠2 𝑠2𝑠1𝑠2𝑠1

...
...

𝑠2

𝑠2𝑠1

𝑠2𝑠1𝑠2

Proposition 7.12. Let (𝑊,𝑆) be a Coxeter system. For 𝑢, 𝑣 ∈ 𝑊 , we have 𝑢 ≤𝑅 𝑣 if and only if
𝑇𝐿 (𝑢) ⊂ 𝑇𝐿 (𝑣).

Proof idea. If 𝑠1 · · · 𝑠𝑞 is a reduced word for 𝑢, then 𝑇𝐿 (𝑢) = {𝑠1, 𝑠1𝑠2𝑠1, 𝑠1𝑠2𝑠3𝑠2𝑠1, . . .}. □

Proposition 7.13. Let𝑊 be finite. Then the maps 𝑥 ↦→ 𝑥𝑤0 and 𝑥 ↦→ 𝑤0𝑥 are antiautomorphisms
of the right weak order. In other words, 𝑥 ≤𝑅 𝑦 if and only if 𝑦𝑤0 ≤𝑅 𝑥𝑤0 if and only if𝑤0𝑦 ≤𝑅 𝑤0𝑥 .
The map 𝑥 ↦→ 𝑤0𝑥𝑤0 is an automorphism of the weak order.
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Proof. Suppose 𝑠 ⋖𝑅 𝑤𝑠 . Then

ℓ (𝑤0𝑤𝑠𝑤0) = ℓ (𝑤0) − ℓ (𝑤𝑠𝑤0) = ℓ (𝑤0) − (ℓ (𝑤0) − ℓ (𝑤𝑠)) = ℓ (𝑤𝑠) = ℓ (𝑤) + 1 = ℓ (𝑤0𝑤𝑤0) + 1,

which proves the last statement of the result.
We’ll finish the rest of the proof next time. □

8. Thursday September 28

8.1. More on the Weak Order.

Remark 8.1. View ℕ2 as a poset, where (𝑎, 𝑏) ≤ (𝑎′, 𝑏′) if and only if 𝑎 ≤ 𝑎′ and 𝑏 ≤ 𝑏′. Young’s
lattice is isomorphic to the lattice of finite order ideals of ℕ2.

Remark 8.2. Let 𝐿 be the lattice below. This lattice has no join-irreducible elements.

Proposition 8.3. For 𝑢, 𝑣 ∈𝑊 , then 𝑢 ≤𝑅 𝑣 if and only if 𝑇𝐿 (𝑢) ⊂ 𝑇𝐿 (𝑣).

Proof. Suppose 𝑇𝐿 (𝑢) ⊂ 𝑇𝐿 (𝑣). Let 𝑠1 · · · 𝑠𝑘 be a reduced word for 𝑢. Let 𝑦𝑖 = 𝑠1 · · · 𝑠𝑖 . We will
prove by induction on 𝑖 that 𝑦𝑖 ≤𝑅 𝑣 . If 𝑖 = 0, then 𝑦𝑖 = 𝑒 ≤𝑅 𝑣 .

Now, assume 1 ≤ 𝑖 ≤ 𝑘 . Let 𝑡 𝑗 = 𝑠1 · · · 𝑠 𝑗−1𝑠 𝑗𝑠 𝑗−1 · · · 𝑠1. Then 𝑡1, . . . , 𝑡𝑘 are the distinct elements
of𝑇𝐿 (𝑢). By induction, there is some reduced word for 𝑣 of the form 𝑠1 · · · 𝑠𝑖−1𝑠

′
1 · · · 𝑠′𝑞 , where𝑤 =

ℓ (𝑣)−𝑖+1. Since 𝑡𝑖 ∈ 𝑇𝐿 (𝑢) ⊂ 𝑇𝐿 (𝑣) and 𝑡𝑖 ∈ {𝑡1, . . . , 𝑡𝑖−1}, we have 𝑡𝑖 = 𝑠1 · · · 𝑠𝑖−1𝑠
′
1 · · · 𝑠′𝑚 · · · 𝑠′1𝑠𝑖−1 · · · 𝑠1

for some 1 ≤ 𝑚 ≤ 𝑞. Hence,
𝑣 = 𝑡2

𝑖 𝑣 = (𝑠1 · · · 𝑠𝑖 · · · 𝑠1) (𝑠1 · · · 𝑠𝑖−1𝑠
′
1 · · · 𝑠′𝑚 · · · 𝑠′1𝑠𝑖−1 · · · 𝑠1)𝑣

= (𝑠1 · · · 𝑠𝑖 · · · 𝑠1) (𝑠1 · · · 𝑠𝑖−1𝑠
′
1 · · · 𝑠′𝑚 · · · 𝑠′𝑞)

= 𝑠1 · · · 𝑠𝑖𝑠′1 · · · 𝑠𝑚
′ · · · 𝑠′𝑞 .

This word has length 𝑖 + 𝑞 − 1 = ℓ (𝑣), so it is reduced. Hence, 𝑦𝑖 ≤𝑅 𝑣 . □

Proposition 8.4. Let𝑊 be finite. Then the maps 𝑥 ↦→ 𝑥𝑤0 and 𝑥 ↦→ 𝑤0𝑥 are antiautomorphisms
of the right weak order. In other words, 𝑥 ≤𝑅 𝑦 if and only if 𝑦𝑤0 ≤𝑅 𝑥𝑤0 if and only if𝑤0𝑦 ≤𝑅 𝑤0𝑥 .
Then map 𝑥 ↦→ 𝑤0𝑥𝑤0 is an automorphism of the weak order.

Proof. It suffices to show that 𝑥 ↦→ 𝑥𝑤0 and 𝑥 ↦→ 𝑤0𝑥 are antiautomorphisms (we get the last
statement for free). Suppose 𝑢 ≤𝑅 𝑣 . Equivalently, ℓ (𝑢−1𝑣) = ℓ (𝑣) − ℓ (𝑢). So
ℓ ((𝑤0𝑣)−1(𝑤0𝑢)) = ℓ (𝑣−1𝑢) = ℓ ((𝑢−1𝑣)−1) = ℓ (𝑢−1𝑣) = ℓ (𝑣) − ℓ (𝑢)

= (ℓ (𝑤0) − ℓ (𝑢)) − (ℓ (𝑤0) − ℓ (𝑣)) = ℓ (𝑤0𝑢) − ℓ (𝑤0𝑣).
Thus,𝑤0𝑣 ≤𝑅 𝑤0𝑢. □

Proposition 8.5. For𝑤 ∈𝑊 and 𝑠 ∈ 𝑆 , the following are equivalent:
(1) 𝑠 ∈ 𝐷𝐿 (𝑤);
(2) 𝑠 ≤𝑅 𝑤 ;
(3) there exists a reduced word for𝑤 that begins with 𝑠 .
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Proof. Note that (2) and (3) are equivalent by the definition of the right weak order.
(3) =⇒ (1): If 𝑠𝑠1 · · · 𝑠𝑘 is a reduced word for 𝑤 , then 𝑠1 · · · 𝑠𝑘 = 𝑠𝑤 , so ℓ (𝑠𝑤) ≤ 𝑘 < 𝑘 + 1 =

ℓ (𝑤).
(1) =⇒ (3): Suppose 𝑠 ∈ 𝐷𝐿 (𝑤). Let 𝑠′1 · · · 𝑠′𝑟 be a reduced word for 𝑠𝑤 . Then 𝑠𝑠′1 · · · 𝑠′𝑟 is a

reduced word for𝑤 that begins with 𝑠 . □

Proposition 8.6. If 𝑢 ≤𝑅 𝑣 , then [𝑢, 𝑣]𝑅 ≃ [𝑒,𝑢−1𝑣]𝑅 . We will show that the map 𝑓 : [𝑒,𝑢−1𝑣]𝑅 →
[𝑢, 𝑣]𝑅 given by 𝑓 (𝑥) = 𝑢𝑥 is a poset isomorphism.

Proof. We will show that the map 𝑓 : [𝑒,𝑢−1𝑣]𝑅 → [𝑢, 𝑣]𝑅 given by 𝑓 (𝑥) = 𝑢𝑥 is a poset isomor-
phism.

We have

(1) ℓ (𝑣) = ℓ (𝑢) + ℓ (𝑢−1𝑣) ≤ ℓ (𝑢) + ℓ (𝑥) + ℓ (𝑥−1𝑢−1𝑣)
and

(2) ℓ (𝑣) ≤ ℓ (𝑢𝑥) + ℓ (𝑥−1𝑢−1𝑣) ≤ ℓ (𝑢) + ℓ (𝑥) + ℓ (𝑥−1𝑢−1𝑣).
Now, 𝑥 ≤𝑅 𝑢−1𝑣 if and only if equality holds in (1), which is true if and only if equality holds in
(2). This holds if and only if 𝑢 ≤𝑅 𝑢𝑥 ≤ 𝑣 . Hence, 𝑥 ∈ [𝑒,𝑢−1𝑣]𝑅 if and only if 𝑓 (𝑥) ∈ [𝑢, 𝑣]𝑅 . Note
that 𝑓 is a bijection.

For 𝑥,𝑦 ∈ [𝑒,𝑢−1𝑣]𝑅 , a similar argument shows that 𝑥 ∈ [𝑒,𝑦]𝑅 if and only if 𝑢𝑥 ∈ [𝑢,𝑢𝑦]𝑅 .
So 𝑥 ≤𝑅 𝑦 if and only if 𝑢𝑥 ≤𝑅 𝑢𝑦.

□

Ameet-semilattice is a poset 𝐿 such that every finite subset of 𝐿 has ameet. Ameet-semilattice
is called complete if every (not necessarily finite) subset of 𝐿 has a meet. Note that Bruhat order
is not a meet-semilattice—consider the Bruhat order on 𝑆3.

Theorem 8.7. The weak order (𝑊, ≤𝑅) is a complete meet-semilattice.

Proof. Suppose 𝑥,𝑦 ∈ 𝑊 ; note that it suffices to show 𝑥 ∧ 𝑦 exists. We induct on ℓ (𝑥). Let
𝐸 = [𝑒, 𝑥]𝑅 ∩ [𝑒,𝑦] − 𝑅. If 𝐸 = {𝑒}. Induct on ℓ (𝑥). Let 𝐸 = [𝑒, 𝑥]𝑅 ∩ [𝑒,𝑦]𝑅 . If 𝐸 = {𝑒}, then
𝑒 = 𝑥 ∧𝑦. We may assume 𝐸 ≠ {𝑒}. Pick 𝑧 ∈ 𝐸 of maximum length. We will show that 𝑧 = 𝑥 ∧𝑦;
to do so, we need to prove that𝑤 ≤𝑅 𝑧 for all𝑤 ∈ 𝐸.

Suppose 𝑠 ∈ 𝐸 ∩ 𝑆 . Let 𝑧 = 𝑠1 · · · 𝑠𝑟 , 𝑥 = 𝑠1 · · · 𝑠𝑟𝑠′1 · · · 𝑠′𝑝 , and 𝑦 = 𝑠1 · · · 𝑠𝑟𝑠′′1 · · · 𝑠′′𝑞 be reduced
words. If 𝑠 ≰𝑅 𝑧, then by the Exchange Property, we have 𝑥 = 𝑠𝑠1 · · · 𝑠𝑟𝑠′1 · · · 𝑠′𝑖 · · · 𝑠′𝑝 and 𝑦 =

𝑠1 · · · 𝑠𝑟𝑠′′1 · · · 𝑠′′
𝑗
· · · 𝑠′′𝑞 are reduced. So 𝑠𝑠1 · · · 𝑠𝑟 ∈ 𝐸, but ℓ (𝑠𝑠1 · · · 𝑠𝑟 ) = 𝑟 + 1 > 𝑟 = ℓ (𝑧), which is a

contradiction. So, 𝑠 ≤𝑅 𝑧.
Now, let𝑤 ∈ 𝐸 \ {𝑒}. We use the following fact: if 𝑥 ∈ 𝐷𝐿 (𝑢) ∩𝐷𝐿 (𝑣), then 𝑢 ≤𝑅 𝑣 if and only

if 𝑠𝑢 ≤𝑅 𝑠𝑣 . Let 𝑠 ∈ 𝐷𝐿 (𝑤). Then 𝑠 ≤𝑅 𝑤 ≤𝑅 𝑥 and 𝑠 ≤𝑅 𝑤 ≤𝑅 𝑦. So 𝑠 ∈ 𝐷𝐿 (𝑥) ∩ 𝐷𝐿 (𝑦). Also,
𝑠 ∈ 𝐷𝐿 (𝑧) by our work in the above. Since ℓ (𝑠𝑥) < ℓ (𝑥), we apply the inductive hypothesis to 𝑠𝑥 ,
which tells us that 𝑧′ := 𝑠𝑥 ∧ 𝑠𝑦 exists. Applying the aforementioned fact to 𝑢 = 𝑥 and 𝑣 = 𝑤 , we
have 𝑠𝑤 ≤𝑅 𝑠𝑥 ; similarly, 𝑠𝑤 ≤𝑅 𝑠𝑦. It follows that 𝑠𝑤 ≤𝑅 𝑧′. To be continued... □

9. Tuesday October 3

10. Thursday October 5

10.1. Pop. Let 𝐿 be a locally finite meet-semilattice. Define Pop : 𝐿 → 𝐿 by Pop(𝑥) = ∧({𝑥} ∪
{𝑦 ∈ 𝐿 | 𝑟 ⋖ 𝑥}).
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Example 10.1. Consider Pop on the following example

Suppose𝑊 is finite. The Coxeter number of𝑊 is ℎ = 2|𝑇 |/|𝑆 |. When𝑊 = 𝑆𝑛, ℎ = 2
(𝑛
2
)
/(𝑛 −

1) = 𝑛. Since we can classify the finite irreducible Coxeter groups, we can write down all of their
Coxeter numbers:

𝑊 𝐴𝑛−1 = 𝑆𝑛 𝐵𝑛 𝐷𝑛 𝐸6 𝐸7 𝐸8 𝐹4 𝐻3 𝐻4 𝐼2(𝑚)
ℎ 𝑛 2𝑛 2𝑛 − 2 12 18 30 12 10 30 𝑚

Theorem10.2 (Defant, 2022). Themaximumnumber of iterations of Pop needed to send an element
of𝑊 to 𝑒 is ℎ − 1. If 𝐽 = 𝑆 \ {𝑠} for some 𝑠 ∈ 𝑆 , then 𝑤0(𝐽 )𝑤0 requires ℎ − 1 iterations of Pop to
reach 𝑒 .

Example 10.3. Consider 𝐼2(5).

10.2. 𝑆𝑛 Geometrically. For 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, let 𝐻𝑖 𝑗 = {(𝑥1, . . . , 𝑥𝑛) ∈ ℝ𝑛 | 𝑥𝑖 = 𝑥 𝑗 }. The
collection of hyperplanes 𝐻𝑖 𝑗 is called the (𝑛th) braid arrangement. Reflecting through 𝐻𝑖 𝑗 has
the effect of swapping the 𝑖th and 𝑗th coordinates. So 𝑆𝑛 acts on ℝ𝑛 by permuting coordinates:
𝑤 (𝑥1, . . . , 𝑥𝑛) = (𝑥𝑤−1 (1), . . . , 𝑥𝑤−1 (𝑛)). So 𝑆𝑛 can be identified with the group generated by reflec-
tions through hyperplanes in the braid arrangement.

A set partition of [𝑛] is a collection of disjoint subsets of [𝑛] whose union is [𝑛]. The subsets
making up a set parition are called blocks. The number of set partitions of [𝑛] is called the 𝑛th
Bell number. It can be shown that ∑︁

𝑛≥0
Bell𝑛

𝑥𝑛

𝑛!
= 𝑒𝑒

𝑥−1.

Moreover, Belln is the number of rhyme schemes of a poem with 𝑛 lines. For example, a poem
with the rhyme scheme AABA corresponds to {{1, 2, 4}, {3}}. Set partitions of [𝑛] correspond to
intersections of hyperplanes in the braid arrangement.
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Example 10.4. Let 𝑛 = 6. The following is a set partition of [6]: {{1, 2, 5}, {3, 6}, {4}}.10
Consider 𝐻12 ∩ 𝐻15 ∩ 𝐻25 ∩ 𝐻36 (note that 𝐻25 is redundant here). Note that

𝐻12 ∩ 𝐻15 ∩ 𝐻25 ∩ 𝐻36 = {(𝑥, 𝑥,𝑦, 𝑧, 𝑥,𝑦) | 𝑥,𝑦, 𝑧 ∈ ℝ}.
Intersections of hyperplanes in the “Coxeter arrangement” of𝑊 are analogs of set partitions.

Fact 10.5. Intersections of hyperplanes in the Coxeter arrangement also correspond to conjugates
of a standard parabolic subgroup. Suppose𝑊 acts on ℝ𝑛 . If 𝑈 = 𝑤𝑊𝐽𝑤

−1, then the points in ℝ𝑛

fixed by all elements of𝑈 form an intersection of hyperplanes in the Coxeter arrangement.

Let
∏
𝑛 be the set of set partitions of [𝑛]. We endow

∏
𝑛 with a partial order such that 𝜌 ≤ 𝜌′ if

every block of 𝜌 is contained in a block of 𝜌′. This is called the 𝑛th partition lattice. Here the meet
is the “greatest common refinement” and the join is given by “combining blocks as minimally as
possible.”

Example 10.6. Consider 𝑛 = 3.

1|2|3

12|3 13|2 1|23

123

A standard Coxeter element of𝑊 is an element 𝑐 ∈ 𝑊 obtained by multiplying all of the
simple reflections in some order.

Example 10.7. In 𝑆𝑛 , we have that 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑛−1 = (12 · · ·𝑛) is a standard Coxeter element.
Another is

𝑐′ =
∏
𝑖∉2ℤ

𝑠𝑖

∏
𝑖∈2ℤ

𝑠𝑖 .

There correspond to acyclic orientations of the Coxeter graph. In 𝑆7, we have

Exercise 10.8. Suppose the Coxeter graph of𝑊 is a tree. Show that all standard Coxeter elements
are conjugate to each other.

If𝑊 is finite and irreducible, then all Coxeter elements are conjugate to each other. Hence,
they all have the same order.

Fact 10.9. This order is the Coxeter number ℎ. A Coxeter element is an element that is conjugate
to a standard Coxeter element.

Let 𝑇 = {𝑤𝑠𝑤−1 | 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆}. This is called the reflection length of 𝑤 . Let ℓ𝑇 (𝑤) be the
minimum number of reflections needed to write𝑤 .

Example 10.10. For 𝑤 ∈ 𝑆𝑛 , we have ℓ𝑇 (𝑤) = 𝑛 − #{cycles in𝑤}. Thus, ℓ𝑇 (𝑒) = 𝑛 − 𝑛 = 0 and
ℓ𝑇 ((𝑖 𝑗)) = 𝑛 − (𝑛 − 1) = 1.

Note that if 𝑢 and 𝑣 are conjugate, then ℓ𝑇 (𝑢) = ℓ𝑇 (𝑣). The absolute order on𝑊 is defined so
that 𝑢 ≤𝑎𝑏 𝑣 if and only if ℓ𝑇 (𝑢−1𝑣) = ℓ𝑇 (𝑣) − ℓ𝑇 (𝑢).
10Another variant of stack sorting exists for set partitions; this is called foot-sorting for socks.

https://arxiv.org/pdf/2211.02021.pdf
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11. Tuesday October 10

11.1. Reflection. Recall that a reflection word is a word over 𝑇 = {𝑤𝑠𝑤−1 | 𝑤 ∈𝑊, 𝑠 ∈ 𝑆}. The
reflection length of𝑤 ∈𝑊 , denoted ℓ𝑇 (𝑤) is theminimum length of a reflectionword representing
𝑤 . The absolute order on𝑊 is the partial order ≤𝑎𝑏 defined so that𝑢 ≤𝑎𝑏 𝑣 if and only if ℓ𝑇 (𝑢−1𝑣) =
ℓ𝑇 (𝑣) − ℓ𝑇 (𝑢). If𝑢 and 𝑣 are conjugate, then they have the same reflection length. Indeed, suppose
𝑣 = 𝑤𝑢𝑤−1 for some element 𝑤 . If 𝑢 = 𝑡1 · · · 𝑡𝑟 for 𝑡1 · · · 𝑡𝑟 ∈ 𝑇 , then 𝑣 = (𝑤𝑡1𝑤−1) · · · (𝑤𝑡𝑟𝑤−1).
Since 𝑢−1𝑣 and 𝑣−1𝑢 are conjugate (𝑢−1𝑣 = 𝑣−1(𝑣𝑢−1)𝑣), we have 𝑢 ≤𝑎𝑏 𝑣 if and only if ℓ𝑇 (𝑣𝑢−1) =
ℓ𝑇 (𝑣) − ℓ𝑇 (𝑢).
Fact 11.1. Suppose 𝑊 is finite. The maximal elements of the absolute order are the Coxeter
elements.

Example 11.2. In 𝑆3, we have the following:

𝑒

(12) (13) (23)

(132) (123)

where we note that
ℓ𝑇 ((13) (123)) = ℓ𝑇 ((13) (123)) = ℓ𝑇 ((12)) = 1 = ℓ𝑇 ((123)) − ℓ𝑇 ((13)) .

We can represent a set partition of [𝑛] pictorially by putting 1, . . . , 𝑛 clockwise around a circle
and drawing convex hulls of the blocks. This is best illustrated by the following example:

Example 11.3. Let 𝑛 = 8 and consider the partition {{1, 3}, {2, 4, 5, 8}, {6}, {7}}.
We say a set partition of [𝑛] is noncrossing if none of the blocks cross each other in the picture.

The example above is not noncrossing, whereas the one below is noncrossing:

Example 11.4. Again let 𝑛 = 8 and consider the partition {{1, 3}, {2}, {4, 5, 8}, {6, 7}}.
Definition 11.5. (Kreweras, 1972) The noncrossing partition lattice NC𝑛 is the sublattice of Π𝑛
consisting of the noncrossing partitions.

Example 11.6. For 𝑛 = 3, every partition is noncrossing, and NC3 looks like:

1|2|3

12|3 13|2 1|23

123

Fact 11.7. Let 𝑐 be a Coxeter element of 𝑆𝑛 . Then NC𝑛 ≃ [𝑒, 𝑐]𝑎𝑏 .
Fact 11.8. We have that

|NCn | = Cat(𝑆𝑛) =
1

𝑛 + 1

(
2𝑛
𝑛

)
,
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where Cat(𝑆𝑛) is the 𝑛th Catalan number.

Definition 11.9. (Brady–Watt, 2002; Bessis, 2003) Let 𝑐 be a Coxeter element of a finite irre-
ducible Coxeter group𝑊 . The 𝑐-noncrossing partition lattice is defined to be

NC(𝑊,𝑐) = [𝑒, 𝑐]𝑎𝑏 .
Let Cat(𝑊 ) = |NC(𝑊,𝑐) |. This is called the𝑊 -Catalan number.

Theorem 11.10 (Brady–Watt, 2002; Bessis, 2003). The 𝑐-noncrossing partition lattice NC(𝑊,𝑐) is
a lattice.

Take a standard Coxeter element 𝑐 , and consider the word 𝑐∞ = 𝑐𝑐𝑐𝑐𝑐 · · · . For 𝑤 ∈ 𝑊 , the
𝑐-sorting word is the reduced word for 𝑤 that is lexicographically first as a subword of 𝑐∞. Let
𝐼
(𝑘)
𝑐 (𝑤) be the set of simple reflections from the 𝑘th 𝑐 in 𝑐∞ used in the 𝑐-sorting word for𝑤 .

Example 11.11. Let𝑊 = 𝑆4 and let 𝑐 = 𝑠1𝑠2𝑠3. The element𝑤 = 4132 has 𝑐-sorting word 𝑠2𝑠3𝑠2𝑠1,
where 𝐼 (1)𝑐 (𝑤) = {𝑠2, 𝑠3}, 𝐼 (2)𝑐 (𝑤) = {𝑠2}, and 𝐼 (3)𝑐 (𝑤) = {𝑠1}. Add how to go about doing this later.

The element𝑤 ′ = 1432 has 𝑐-sorting word 𝑠2𝑠3𝑠2, and 𝐼 (1)𝑐 (𝑤 ′) = {𝑠2, 𝑠3} and 𝐼 (2)𝑐 (𝑤 ′) = {𝑠2}.

Definition 11.12. An element𝑤 ∈𝑊 is called 𝑐-sortable if 𝐼 (1)
𝐶

(𝑤) ⊃ 𝐼
(2)
𝑐 (𝑤) ⊃ 𝐼

(3)
𝑐 (𝑤) ⊃ · · · .

Exercise 11.13. Let𝑊 = 𝑆𝑛 . Let 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑛−1. Then𝑤 is 𝑐-sortable if and only if it avoids 312.

Theorem 11.14 (Reading). Fix a Coxeter element 𝑐 of𝑊 . Then the number of 𝑐-sortable elements
of𝑊 is Cat(𝑊 ).
Proof idea. Let 𝑠𝑖1, . . . , 𝑠𝑖𝑁 be the 𝑐-sortingword for𝑤0. Let 𝑡 𝑗 = 𝑠𝑖1 · · · 𝑠𝑖 𝑗 · · · 𝑠𝑖2𝑠𝑖1 . Then 𝑡1, 𝑡2, . . . , 𝑡𝑁
is a list of all reflections of𝑊 . For𝑤 ∈𝑊 , let cov(𝑤) = {𝑡 ∈ 𝑇 | 𝑡𝑤⋖𝑅𝑤} = {𝑤𝑠𝑤−1 | 𝑠 ∈ 𝐷𝑅 (𝑤)}.
Let𝜓 (𝑤) be the element of𝑊 obtained by multiplying the reflections in cov(𝑤) in the order that
they appear in the list 𝑡𝑁 , . . . , 𝑡2, 𝑡1. Then 𝜓 restricts to a bijection from the set of 𝑐-sortable
elements to the noncrossing partition lattice NC(𝑊,𝑐). □

Let Camb𝑐 = {𝑤 ∈𝑊 | 𝑤 is 𝑐 sortable}. View Camb𝑐 as a subposet of the right weak order.

Theorem 11.15 (Reading). Camb𝑐 is a sublattice of the right weak order. We call it the 𝑐-Cambrian
lattice. For each𝑤 ∈𝑊 , the set {𝑦 ∈𝑊 | 𝑦 ≤𝑅 𝑤} ∩ Camb𝑐 has a unique maximal element, which
we denote by 𝜋↓𝑐 (𝑤).

12. Thursday October 12

12.1. More on Cambrian Lattices. Let𝑊 be a finite irreducible Coxeter group. Fix a standard
Coxeter element 𝑐 . Let Camb𝑐 be the set of 𝑐-sortable elements of𝑊 , viewed as a subposet of the
(right) weak order. Recall the following theorem, which was stated originally as Theorem 12.1:

Theorem 12.1 (Reading). Camb𝑐 is a sublattice of the right weak order. For each 𝑤 ∈ 𝑊 , the set
{𝑦 ∈ Camb𝑐 | 𝑦 ≤ 𝑤} has a unique maximal element 𝜋↓𝑐 (𝑤). The map 𝜋↓𝑐 : 𝑊 → Camb𝑐 is a
surjective lattice homomorphism from the weak order to Camb𝑐 .

Fact 12.2. When𝑊 = 𝑆𝑛 , the Hasse diagram of Camb𝑐 is isomorphic (as a graph) to the 1-skeleton
of an (𝑛 − 1)-dimensional polytope called the associahedron.

Define an equivalence relation on𝑊 as follows: 𝑢 ≡ 𝑣 if and only if 𝜋↓𝑐 (𝑢) = 𝜋
↓
𝑐 (𝑣) . In 𝑆𝑛 ,

glue the equivalent regions of the braid arrangement.
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Example 12.3. Consider𝑊 = 𝑆3, and let 𝑐 = 𝑠1𝑠2. Recall the associated braid arrangement:

When𝑊 = 𝑆𝑛 and 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑛−1, we have that Camb𝑐 is the set of 312-avoiding permuta-
tions in 𝑆𝑛 , and Camb𝑐 is the 𝑛th Tamari lattice, which was introduced by Dev Tamari in 1962.
In this case, the bipartite Coxeter elements are (𝑠1𝑠3𝑠5 · · · ) (𝑠2𝑠4𝑠6 · · · ) and (𝑠2𝑠4𝑠6 · · · ) (𝑠1𝑠3𝑠5 · · · ).
More generally, if𝑊 is finite and irreducible, its Coxeter graph is a tree. Find a bipartition 𝑋 ⊔𝑌
of the simple reflections, and let 𝑐𝑋 =

∏
𝑥∈𝑋 𝑠 and 𝑐𝑌 =

∏
𝑠∈𝑌 𝑠 . Then 𝑐𝑋𝑐𝑌 and 𝑐𝑌𝑐𝑋 are bipartite

Coxeter elements.

Example 12.4. Consider 𝐷6.

Theorem 12.5 (Barnard–Defant–Hanson, 2023++). The maximum number of iterations of Pop
needed to send an element of Camb𝑐 to the bottom element 0̂ is ℎ − 1, where ℎ = 2|𝑇 |/|𝑆 | is the
Coxeter number of𝑊 .
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Theorem 12.6 (Hong, 2022). Let 𝑎𝑡 (𝑛) be the number of elements of the 𝑛th Tamari lattice that
require 𝑡 or fewer iterations of Pop to reach 0̂. Then∑︁

𝑛≥
𝑎𝑡 (𝑛)𝑧𝑛 =

𝑧

1 − 2𝑧 − ∑𝑡
𝑗=2𝐶 𝑗−1𝑧 𝑗

,

where here 𝐶 𝑗−1 is the ( 𝑗 − 1)st Catalan number.

12.2. Dyck Paths.

Definition 12.7. A Dyck path is a lattice path using unit up steps and unit down steps starting at
the origin and ending on the 𝑥-axis such that the path never passes below the 𝑥-axis. The number
of Dyck paths of length 2𝑛 is 𝐶𝑛 .

Example 12.8. Here is an example of a Dyck path:

Define a partial order on the set of Dyck paths of length 2𝑛 so that Λ ≤ Λ′ if Λ lies weakly
below. We illustrated this partial order using the following example:

Example 12.9. Set 𝑛 = 3. We see that the partial order on the Dyck paths of length 6 is given
below. There are 5 of these, since 5 is the third Catalan number. Add picture later.

A Motzkin path is a lattice path using unit up, unit down, and unit horizontal steps that
likewise begins at the origin, ends on the 𝑥-axis, and never passes below the 𝑥-axis. The number
of Motzkin paths of length 𝑛 is called the 𝑛th Motzkin number.

Example 12.10. Below are the Motzkin paths of length 4; hence we see that the 4th Motzkin
number is 9.

We can also consider Pop on the lattice of Dyck paths.

Example 12.11. Add picture later.



28 COLIN DEFANT

Theorem 12.12 (Sapoinakis–Tasoulas–Tsikouras, 2006). The size of the image of Pop on the lattice
of Dyck paths of length 2𝑛 is

𝑛−1∑︁
𝑘=0

1
𝑘 + 1

(
2𝑘
𝑘

) (
𝑛 + 𝑘 − 1

3𝑘

)
.11

Hint for the following homework problem. Problem Set 3, Problem 1(b): Show that 𝐷𝑛 >

𝑛/2 − 𝑜 (𝑛). Hint: every permutation in the image of Pop on 𝑆𝑛 has all of its descending runs of
size at most 3 (prove this if you want to use it).

Theorem 12.13 (Hong, 2022). The size of the image of Pop on the 𝑛th Tamari lattice is the (𝑛−1)st
Motzkin number.

Example 12.14. Add example later.

The Type-𝐵 Tamari lattice Tam(𝐵𝑛) is Camb𝑐 , where 𝑐 is the Coxeter element 𝑠0𝑠1 · · · 𝑠𝑛−1 of
𝐵𝑛 .

Theorem 12.15 (Choi–Sun, 2023+). The size of the image of Pop on Tam(𝐵𝑛) is
⌊ 𝑛+1

2 ⌋∑︁
𝑘=0

(
𝑛 − 1
𝑘

) (
𝑛 + 1 − 𝑘

𝑘

)
.

13. Tuesday October 17

13.1. Cambrian Lattices and Toric Posets. Here are some examples of Cambrian lattices for
𝑊 = 𝐵3. Add pictures later.

Consider Camb𝑐 = {𝑐-sortable elements of𝑊 }. The set of atoms (i.e., the elements covering
0̂) are the simple reflections. For 𝑠 ∈ 𝑆 , it turns out that

{𝑥 ∈ Camb𝑐 | 𝑥 ≥ 𝑠 and 𝑥 ≱ 𝑠′ for all 𝑠′ ∈ 𝑆 \ {𝑠}}
has a unique maximal element 𝑝𝑠 . The 𝑝𝑠 ’s are intimately connected to quiver representations. Let
𝜃𝑐 = {𝑥 ∈ Camb𝑐 | 𝑥 ≥ 𝑝𝑠 for some 𝑠 ∈ 𝑆}.
Example 13.1. Let𝑊 = 𝑆3 and 𝑐 = 𝑠1𝑠2. Then Camb𝑐 is given by the following:

𝑠1

𝑝𝑠1

𝑝𝑠2

Theorem 13.2 (Barnard–Defant–Hanson, 2023++). An element𝑤 ∈ Camb𝑐 is in the image of Pop
if and only if𝑤 ∉ 𝜃𝑐 and the right descents of𝑤 all commute with each other.

Let 𝐺 be a graph. An acyclic orientation of 𝐺 is an orientation of the edges of 𝐺 with no
directed cycles. If 𝛼 is an acyclic orientation, we obtain a partial order ≤𝛼 on the set of vertices
in which 𝑢 ≤𝛼 𝑣 if and only if there is a directed path in 𝛼 from 𝑢 to 𝑣 .

Example 13.3. Consider the following graph, whose nodes we replace by vertex labels:
11This was refined by Choi and Sun recently.
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𝑣

𝑢 𝑤

𝑥

𝑦

𝑧

The resulting poset is given by

𝑣

𝑢

𝑤

𝑥

𝑦

𝑧

Let (𝑊,𝑆) be a Coxeter system with finitely many simple reflections. Let Γ be the Coxeter
graph.

Proposition 13.4. The standard Coxeter elements of𝑊 correspond bijectively to acyclic orientations
of Γ. The reduced words of the standard Coxeter element corresponding to 𝛼 are the linear extensions
of (𝑆, ≤𝛼 ).

Example 13.5. We illustrate the theorem using𝑊 = 𝑆6. Consider the following acyclic orienta-
tion of the Coxeter graph with its corresponding poset

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

Hence, the reduced words of the standard Coxeter element corresponding to this acyclic orien-
tation are

{𝑠1𝑠3𝑠2𝑠4𝑠5, 𝑠1𝑠3𝑠4𝑠2𝑠5, 𝑠1𝑠3𝑠4𝑠5𝑠2, 𝑠3𝑠1𝑠4𝑠5𝑠2, 𝑠3𝑠1𝑠4𝑠2𝑠5, 𝑠3𝑠1𝑠2𝑠4𝑠5}.

Proof. If 𝑠𝑖1 · · · 𝑠𝑖𝑛 and 𝑠 𝑗1 · · · 𝑠 𝑗𝑛 are two linear extensions of (𝑆, ≤𝛼 ), then we can get from one to
the other using Bender–Knuth involutions (by a problem on Problem Set 2). These correspond
to commutation moves. Thus 𝑠𝑖1 · · · 𝑠𝑖𝑛 = 𝑠 𝑗1 · · · 𝑠 𝑗𝑛 (as elements of𝑊 ).

Conversely, if 𝑠𝑖1 · · · 𝑠𝑖𝑛 = 𝑠 𝑗1 · · · 𝑠 𝑗𝑛 (in𝑊 ), then by Matsumoto’s Theorem, we can get from
one to the other by applying commutation moves. These do not affect the acyclic orientation. □

Given some acyclic orientation and a sink in the orientation, we can perform a source-to-sink
move by reversing the arrows going out of the source. Likewise, we can perform sink-to-source
moves. For example:
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𝑣

𝑢 𝑤

𝑥

𝑦

𝑧 𝑣

𝑢 𝑤

𝑥

𝑦

𝑧

If 𝑠 is a source of 𝛼 , then the corresponding Coxeter element has a reduced word starting
with 𝑠 . Performing a source-to-sink move to 𝑠 just conjugates the associated Coxeter element by
𝑠 .

Example 13.6. Let𝑊 = 𝑆6. The acyclic orientation

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

corresponds to 𝑠3𝑠1𝑠2𝑠4𝑠5. Performing a source-to-sink move at 𝑠3, we have the following acyclic
orientation

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

which corresponds to 𝑠1𝑠2𝑠4𝑠5𝑠3.

A toric poset of a graph 𝐺 is an equivalence class of acylic orientations of 𝐺 , where two
acyclic orientations are equivalent if one can be obtained in the other via source-to-sink and
sink-to-source moves.

Theorem 13.7. Two standard Coxeter elements of𝑊 are conjugate if and only if their corresponding
acyclic orientations of Γ belong to the same toric poset.

13.2. Geometric Representations. Let (𝑊,𝑆) be a Coxeter system. Let𝑉 be a real vector space
with basis {𝛼𝑠 | 𝑠 ∈ 𝑆}. Define a bilinear form (•|•) on 𝑉 by letting (𝛼𝑠 |𝛼𝑠′) = − cos(𝜋/𝑚(𝑠, 𝑠′)).
For 𝑠 ∈ 𝑆 , define 𝜎𝑠 : 𝑉 → 𝑉 by 𝜎𝑠 (𝛽) = 𝛽 − 2(𝛼𝑠 |𝛽)𝛼𝑠 . The map 𝑠 ↦→ 𝜎𝑠 extends to a faithful
representation of𝑊 . That is, for 𝑤 = 𝑠𝑖1 · · · 𝑠𝑖𝑟 ∈ 𝑊 , we can define 𝜎𝑤 = 𝜎𝑠𝑖1 · · ·𝜎𝑠𝑖𝑟 , and the
map 𝑤 ↦→ 𝜎𝑤 is a well-defined injective group homomorphism𝑊 → GL(𝑉 ). This is called the
standard geometric representation of𝑊 .

Example 13.8. Let𝑊 = 𝑆𝑛 , and let

𝑉 =

{
(𝛾1, . . . , 𝛾𝑛) ∈ ℝ𝑛

���� ∑︁
𝑖

𝛾𝑖 = 0

}
.

Let 𝑒𝑖 be the 𝑖th standard basis vector inℝ𝑛 (i.e., the vector whose 𝑖th coordinate is 1 and all other
coordinates 0). Let 𝛼𝑠𝑖 = 𝛼𝑖 = 𝑒𝑖 − 𝑒𝑖+1. It is not difficult to compute that (𝛼𝑖 |𝛼𝑖) = − cos(𝜋/1) = 1
and that (𝛼𝑖 |𝛼𝑖±1) = − cos(𝜋/3) = 1/2 and that (𝛼𝑖 |𝛼 𝑗 ) = − cos(𝜋/2) = 0 for |𝑖 − 𝑗 | ≥ 2. Hence,

𝜎𝑠𝑖 (𝛼𝑖) = 𝛼𝑖 − 2(𝛼𝑖 |𝛼𝑖)𝛼𝑖 = −𝛼𝑖 = 𝑒𝑖+1 − 𝑒𝑖 ;

𝜎𝑠𝑖 (𝛼𝑖+1) = 𝛼𝑖+1 − 2(𝛼𝑖 |𝛼𝑖+1)𝛼𝑖 = 𝛼𝑖+1 + 𝛼𝑖 = 𝑒𝑖 − 𝑒𝑖+2;

𝜎𝑠𝑖 (𝛼𝑖−1) = 𝛼𝑖−1 − 2(𝛼𝑖 |𝛼𝑖−1)𝛼𝑖 = 𝛼𝑖−1 + 𝛼𝑖 = 𝑒𝑖−1 − 𝑒𝑖+1.

For |𝑖 − 𝑗 | ≥ 2, we have 𝜎𝑠𝑖 (𝛼 𝑗 ) = 𝛼 𝑗 − 2(𝛼𝑖 |𝛼 𝑗 )𝛼𝑖 = 𝛼 𝑗 .
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14. Thursday October 19

14.1. The Geometric Representation and Roots. Let 𝑉 be a real vector space with basis
{𝛼𝑠 | 𝑠 ∈ 𝑆}. Define bilinear form on 𝑉 by (𝑎𝑠 |𝑎𝑠′) = − cos(𝜋/𝑚(𝑠, 𝑠′)). Define 𝜎𝑠 : 𝑉 → 𝑉

by 𝜎𝑠 (𝛽) = 𝛽 − 2(𝛼𝑠 |𝛽)𝛼𝑠 . For𝑤 = 𝑠𝑖1 · · · 𝑠𝑖𝑟 , we have 𝜎𝑤 = 𝜎𝑠𝑖1 · · ·𝜎𝑠𝑖𝑟 .
Recall the following example from last lecture:

Example 14.1. Let𝑊 = 𝑆𝑛 , and let

𝑉 =

{
(𝛾1, . . . , 𝛾𝑛) ∈ ℝ𝑛

���� ∑︁
𝑖

𝛾𝑖 = 0

}
.

Let 𝑒𝑖 be the 𝑖th standard basis vector inℝ𝑛 (i.e., the vector whose 𝑖th coordinate is 1 and all other
coordinates 0). Let 𝛼𝑠𝑖 = 𝛼𝑖 = 𝑒𝑖 − 𝑒𝑖+1. It is not difficult to compute that (𝛼𝑖 |𝛼𝑖) = − cos(𝜋/1) = 1
and that (𝛼𝑖 |𝛼𝑖±1) = − cos(𝜋/3) = 1/2 and that (𝛼𝑖 |𝛼 𝑗 ) = − cos(𝜋/2) = 0 for |𝑖 − 𝑗 | ≥ 2. Hence,

𝜎𝑠𝑖 (𝛼𝑖) = 𝛼𝑖 − 2(𝛼𝑖 |𝛼𝑖)𝛼𝑖 = −𝛼𝑖 = 𝑒𝑖+1 − 𝑒𝑖 ;
𝜎𝑠𝑖 (𝛼𝑖+1) = 𝛼𝑖+1 − 2(𝛼𝑖 |𝛼𝑖+1)𝛼𝑖 = 𝛼𝑖+1 + 𝛼𝑖 = 𝑒𝑖 − 𝑒𝑖+2;
𝜎𝑠𝑖 (𝛼𝑖−1) = 𝛼𝑖−1 − 2(𝛼𝑖 |𝛼𝑖−1)𝛼𝑖 = 𝛼𝑖−1 + 𝛼𝑖 = 𝑒𝑖−1 − 𝑒𝑖+1.

For |𝑖 − 𝑗 | ≥ 2, we have 𝜎𝑠𝑖 (𝛼 𝑗 ) = 𝛼 𝑗 − 2(𝛼𝑖 |𝛼 𝑗 )𝛼𝑖 = 𝛼 𝑗 . So if 𝛽 = (𝛽1, . . . , 𝛽𝑛), then 𝜎𝑠𝑖 (𝛽) =

(𝛽1, . . . , 𝛽𝑖+1, 𝛽𝑖, . . . , 𝛽𝑛). In general, 𝜎𝑤 (𝛽) = (𝛽𝑤−1 (1), . . . , 𝛽𝑤−1 (𝑛)). From here on out, we will
often use𝑤𝛽 to denote 𝜎𝑤 (𝛽) for convenience and cleanliness of notation.

Example 14.2. For an even more concrete example, consider the dihedral group of order 12,
𝐼2(6). We see that

𝑠1𝛼𝑠2 = 𝛼𝑠2 − 2(𝛼𝑠2 |𝛼𝑠1)𝛼𝑠1 = 𝛼𝑠2 + 2 cos(𝜋/6)𝛼𝑠1
and

𝑠1𝛼𝑠1 = 𝛼𝑠1 − 2(𝛼𝑠1 |𝛼𝑠1)𝛼𝑠1 = −𝛼𝑠1 .
We can visualize the 𝐼2(𝑚)-action on this vector space geometrically as reflections of the vectors.
Add figure later.

𝛼1 𝛼2

𝛼1

𝛼22𝛼1

2𝛼2

𝛼1 + 𝛼2 𝛼2 − 𝛼1

Proposition 14.3. The action of𝑊 on 𝑉 preserves (•|•).
Proof. For 𝛽,𝛾 ∈ 𝑉 and 𝑠 ∈ 𝑆 , we have

(𝑠𝛽 |𝑠𝛾) = (𝛽 − 2(𝛼𝑠 |𝛽)𝛼2 |𝛾 − 2(𝛼𝑠 |𝛾)𝛼𝑠)
= (𝛽 |𝛾) − 2(𝛼𝑠 |𝛾) (𝛽 |𝛼𝑠) − 2(𝛼𝑠 |𝛽) (𝛼𝑠 |𝛾) + 4(𝛼𝑠 |𝛽) (𝛼𝑠 |𝛾) (𝛼𝑠 |𝛼𝑠) = (𝛽 |𝛾)

because (𝛽 |𝛼𝑠) = (𝛼𝑠 |𝛽) and (𝛼𝑠 |𝛼𝑠). □

Let 𝜙 = {𝑤𝛼𝑠 | 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆}. We call 𝜙 the root system of𝑊 , and elements of 𝜙 are called
roots. For 𝑠 ∈ 𝑆 , we call 𝛼𝑠 simple roots.
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Fact 14.4. Every root 𝛽 ∈ 𝜙 can be written uniquely as
∑
𝑠∈𝑆 𝑐𝑠𝛼𝑠 for some real numbers 𝑐𝑠 .

Moreover, the coefficients 𝑐𝑠 are either all nonnegative or all nonpositive.

A root is said to be positive if it is in ℝ≥0span{𝛼𝑠}; a root is said to be negative if it is in
ℝ≤0span{𝛼𝑠}. Let 𝜙+ and 𝜙− denote the sets of positive and negative roots, respectively. Note
that −𝜙− = 𝜙+. Moreover, we may write

𝜙 = 𝜙+ ⊔ 𝜙−.

Since the action of𝑊 preserves (•|•) and (𝛼𝑠 |𝛼𝑠) = 1 for all 𝑠 ∈ 𝑆 , it follows that (𝛽 |𝛽) = 1 for all
roots 𝛽 ∈ 𝜙 . Thus, ℝ𝛽 ∩ 𝜙 = {±𝛽}.

Recall that for a vector space𝑉 , its dual𝑉 ∗ is the space of linear functions 𝑝 : 𝑉 → ℝ. There
is a natural pairing of 𝑉 ∗ and 𝑉 defined by ⟨𝑝, 𝛽⟩ = 𝑝 (𝛽). For 𝛽 ∈ 𝑉 , consider the hyperplane

𝐻𝛽 = {𝑝 ∈ 𝑉 ∗ | 𝑝 (𝛽) = 0}.
The Coxeter arrangement of𝑊 is the setH𝑊 = {𝐻𝛽 | 𝛽 ∈ 𝜙}.

Example 14.5. Let𝑊 = 𝑆3 and 𝑉 = {(𝛾1, 𝛾2, 𝛾3) ∈ ℝ3 | 𝛾1 + 𝛾2 + 𝛾3 = 0}. Fix pictures (ChatGPT
made these).

𝛼1

𝛼2
−𝛼2−𝛼1 − 𝛼2 −𝛼3

Example 14.6. Let𝑊 = 𝑆𝑛 and 𝑉 the standard geometric representation of𝑊 . Then
𝜙 = {𝑒𝑖 − 𝑒 𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗},

and𝑤 (𝑒𝑖 − 𝑒𝑖+1) = 𝑒𝑤 (𝑖) − 𝑒𝑤 (𝑖+1) . We have
𝜙+ = {𝑒𝑖 − 𝑒 𝑗 | 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛} and 𝜙− = {𝑒 𝑗 − 𝑒𝑖 | 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}.

Wemay think of𝑉 ∗ asℝ𝑛/span{(1, . . . , 1)}, where ⟨(𝑥𝑖), (𝛾𝑖)⟩ =
∑
𝑖 𝑥𝑖𝛾𝑖 . Then𝐻𝑒𝑖−𝑒 𝑗 = {(𝑥1, . . . , 𝑥𝑛) ∈

𝑉 ∗ | 𝑥𝑖 = 𝑥 𝑗 }.
Example 14.7. Let𝑊 = 𝐵𝑛 and 𝑉 the standard geometric represntation of𝑊 . Note that 𝛼𝑠𝑖 =
𝛼𝑖 = 𝑒𝑖 − 𝑒𝑖+1 if 1 ≤ 𝑖 ≤ 𝑛 − 1 and that 𝛼𝑠0 = 𝛼0 = 𝑒1. Moreover, we have

𝜙 = {⟨, ⟩𝑚𝑒𝑖 ± 𝑒 𝑗 | 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛} ∪ {±𝑒𝑖 | 1 ≤ 𝑖 ≤ 𝑛};
𝜙+ = {𝑒𝑖 ± 𝑒 𝑗 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑒𝑖 | 1 ≤ 𝑖 ≤ 𝑛};

𝜙− = {−𝑒𝑖 ± 𝑒 𝑗 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {−𝑒𝑖 | 1 ≤ 𝑖 ≤ 𝑛}.
Regard 𝑉 ∗ as ℝ𝑛 , where ⟨(𝑥𝑖), (𝛾𝑖)⟩ =

∑
𝑖 𝑥𝑖𝛾𝑖 . Then 𝐻𝑒𝑖−𝑒 𝑗 = {(𝑥1, . . . , 𝑥𝑛) | 𝑥𝑖 = 𝑥 𝑗 }, 𝐻𝑒𝑖+𝑒 𝑗 =

{(𝑥1, . . . , 𝑥𝑛) | 𝑥𝑖 = −𝑥 𝑗 }, and 𝐻𝑒𝑖 = {(𝑥1, . . . , 𝑥𝑛) | 𝑥𝑖 = 0}.
A region of the Coxeter arrangement of H𝑊 is the closure of a connected component of

𝑉 ∗ \ ⋃
𝛽∈𝜙 𝐻𝛽 . Let 𝔹 = {𝑝 ∈ 𝑉 ∗ | 𝑝 (𝛼𝑠) ≥ 0 for all 𝑠 ∈ 𝑆}. We call 𝔹 the base region.

There is an action of𝑊 on 𝑉 ∗ satisfying ⟨𝑤𝑝, 𝛽⟩ = ⟨𝑝,𝑤−1𝛽⟩ for all 𝑝 ∈ 𝑉 ∗, 𝛽 ∈ 𝑉 , and
𝑤 ∈ 𝑊 . This induces an action of𝑊 on the regions of H𝑊 . This is a free action (i.e., for any
region 𝑅, the only element of𝑊 that fixes 𝑅 is 𝑒). This allows us to identify𝑤 ∈𝑊 with𝑤𝔹.
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15. Tuesday October 24

15.1. The Tits Cone. Recall that 𝑉 is a real vector space with basis {𝛼𝑠 | 𝑠 ∈ 𝑆}; let 𝑉 ∗ denote
the dual space. For 𝑝 ∈ 𝑉 ∗ and 𝛽 ∈ 𝑉 , we let ⟨𝑝, 𝛽⟩ = 𝑝 (𝛽). For 𝑠 ∈ 𝑆 and 𝛽 ∈ 𝑉 , we have
𝑠𝛽 = 𝛽−2(𝛼𝑠 |𝛽)𝛼𝑠 . This extends to an action of𝑊 on𝑉 . The root system𝜙 = {𝑤𝛼𝑠 | 𝑠 ∈ 𝑆,𝑤 ∈𝑊 }.
Let 𝐻𝛽 = {𝑝 ∈ 𝑉 ∗ | 𝑝 (𝛽) = 0}. Also recall that H𝛽 = {𝐻𝛽 | 𝛽 ∈ 𝜙} is called the Coxeter
arrangement of𝑊 . There is an action of𝑊 on 𝑉 ∗ given by ⟨𝑤𝑝, 𝛽⟩ = ⟨𝑝,𝑤−1𝛽⟩. A region of H𝑊

is the closure of a connected component of 𝑉 ∗ \ ⋃
𝛽∈𝜙 𝐻𝛽 . We obtain a free action of𝑊 on the

set of regions of H𝑊 . The base region is 𝔹 = {𝑝 ∈ 𝑉 ∗ | 𝑝 (𝛼𝑠) ≥ 0 for all 𝑠 ∈ 𝑆}. We can identify
𝑤 ∈𝑊 with𝑤𝔹.

Example 15.1. Consider𝑊 = 𝑆3 so that 𝑉 = {(𝛾1, 𝛾2, 𝛾3) ∈ ℝ3 | 𝛾1 + 𝛾2 + 𝛾3 = 0}.

Recall that a bilinear form is positive definite if 𝐵(𝑣, 𝑣) > 0 for all 𝑣 ≠ 0.

Remark 15.2. We see that𝑊 is finite if and only if (•|•) is positive definite.

When𝑊 is finite, every region of H𝑊 is identifies with some unique element of𝑊 . This is
false when𝑊 is infinite. We define the Tits cone of𝑊 to be

⋃
𝑤∈𝑊

𝑤𝔹.

Example 15.3. Consider 𝐼2(∞), generated by 𝑟, 𝑠 with𝑚(𝑟, 𝑠) = ∞.
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The Tits cone is the open lower half-plane together with the origin.

Example 15.4. Consider𝑊 = 𝑆3. Add picture later.

Note here that the reduced words for𝑤 ∈𝑊 correspond to maximal chains of [𝑒,𝑤]𝐿 .
For 𝛽 ∈ 𝜙 define 𝑡𝛽 : 𝑉 → 𝑉 by 𝑡𝛽𝛾 = 𝛾 − 2(𝛾 |𝛽)𝛽 (note that 𝑡𝛽 = 𝑡−𝛽 ). If 𝛽 = 𝛼𝑠 , then 𝑡𝛽 = 𝑠 .

More generally, if 𝛽 = 𝑤𝛼𝑠 , then
𝑡𝛽𝛾 = 𝛾−2(𝛾 |𝑤𝛼𝑠)𝑤𝛼𝑠 = 𝑤 (𝑤−1𝛾−2(𝛾 |2𝛼𝑠)𝛼𝑠) = 𝑤 (𝑤−1𝛾−2(𝑤−1𝛾 |𝛼𝑠)𝛼𝑠) = 𝑤 (𝑠𝑤−1𝛾) = 𝑤𝑠𝑤−1𝛾 .

This shows that 𝑡𝛽 and𝑤𝑠𝑤−1 agree as elements of𝐺𝐿(𝑉 ). The standard geometric representation
is faithful, so we can identify 𝑡𝛽 with 𝑤𝑠𝑤−1. Letting 𝑇 = {𝑤𝑠𝑤−1 | 𝑠 ∈ 𝑆, 𝑤 ∈𝑊 }, we obtain a
map 𝜌 : 𝜙+ → 𝑇 given by 𝜌 (𝛽) = 𝑡𝛽 .
Proposition 15.5. The map 𝜌 : 𝜙+ → 𝑇 is a bijection.

Proof. To see injectivity, suppose that 𝛽, 𝛽′ ∈ 𝜙+ and 𝑡𝛽 = 𝑡𝛽′ . Then 𝑡𝛽𝛽 = 𝛽 − 2(𝛽 |𝛽)𝛽 = 𝛽 − 2𝛽 =

−𝛽 . Similarly, we have 𝑡𝛽′ = 𝛽 − 2(𝛽 |𝛽′)𝛽′. Thus, 𝛽 − 2(𝛽 |𝛽′)𝛽′ = −𝛽 , implying 𝛽 = (𝛽 |𝛽′)𝛽′. □

16. Thursday October 26

Recall: 𝑆3 has Coxeter diagram a triangle with vertices 𝑠0, 𝑠1, 𝑠2.
Let𝑇 = {𝑤𝑠𝑤−1 : 𝑤 ∈𝑊, 𝑠 ∈ 𝑆}.We obtain a bijection 𝜌 : 𝜙+ → 𝑇 given by 𝜌 (𝛽) = 𝑡𝛽 , where

𝑡𝛽𝛾 = 𝛾 − 2(𝛾 |𝛽)𝛽.
Fact 16.1. For𝑤 ∈𝑊 and and 𝛾 ∈ 𝜙+,𝑤𝛾 ∈ 𝜙− iff 𝑡𝛾 ∈ 𝑇𝑅 (𝑤) .
Example 16.2. 𝑊 = 𝑆𝑛 . 𝛾 = 𝑒𝑖 − 𝑒 𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛). In this case, the reflection 𝑡𝛾 = (𝑖 𝑗).We have
𝑤𝛾 = 𝑒𝑤 (𝑖) − 𝑒𝑤 ( 𝑗) , so𝑤𝛾 ∈ 𝜙− iff𝑤 (𝑖) > 𝑤 ( 𝑗) iff (𝑖 𝑗) ∈ 𝑇𝑅 (𝑤).

For 𝑋 ⊆ 𝑊 , let 𝑋𝔹 = ∪𝑥∈𝑋𝑥𝔹. Say 𝑋 is convex 12 if 𝑋𝔹 is an intersection of half-spaces
determined by hyperplanes in the Coxeter arrangementH𝑊 and the Tits cone. (If 𝑋 =𝑊 , we get
the whole Tits cone.)

(picture with triangles highlighted 𝑠2, 𝑒, 𝑠1, 𝑠0𝑠1, 𝑠0, 𝑠1𝑠0, 𝑠1𝑠0𝑠1).copy diagram
(diagram with 6 regions 123 132 231 321 312 213 clockwise from bottom, 213 312 shaded).

make diagram
12This definition of convex coincides with the usual geometric notion.
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Suppose 𝑃 = ( [𝑛], ≤𝑃 ) where [𝑛] := {1, 2, ..., 𝑛} is a poset. A linear extension of 𝑃 is a bijection
𝑤 : 𝑃 → [𝑛] such that𝑤 (𝑖) ≤ 𝑤 ( 𝑗) whenever 𝑖 ≤𝑃 𝑗 .
Example 16.3. The linear extensions of

2 1 3 3 3 2

1 2 1
are 213 and 312.

This poset has relations 2 ≤𝑃 1 and 2 ≤𝑃 3, which correspond to the linear inequalities
𝑥2 ≤ 𝑥1 and 𝑥2 ≤ 𝑥3.

The inequality 𝑥2 ≤ 𝑥1 corresponds to the half-space where the second coordinate is smaller
than the first (top side of line with angle 120 from positive 𝑥-axis) and the other inequality cor-
responds to the half-space where the second coordinate is smaller than the third (bottom side of
line with angle 60 from positive 𝑥-axis).

In general, nonempty convex sets in 𝑆𝑛 are in bijective correspondence with partial orders
on [𝑛]. The elements of the convex set are the linear extensions of the poset. Thus, nonempty
convex sets in Coxeter groups generalize finite posets.

(shaded pink region in LHS of board) make diagram

Definition 16.4. Let L be a convex subset of𝑊 . For 𝑠 ∈ 𝑆 , define the Bender-Knuth involution
BK𝑠 : L → L by

BK𝑆 (𝑤) =
{
𝑠𝑤 if 𝑠𝑤 ∈ L;
𝑤 if 𝑠𝑤 ∉ L.

Fact 16.5. This is a good fact. Any element of L can be obtained from any other element of L
by applying some sequence of Bender-Knuth involutions.

(diagram modified: s1s0s1 to s1so by BK s0 and 101 to 01 by BKs1) insert diagram

Proof. Convex sets are connected. □

We will take a detour into hyperplane arrangements.

Definition 16.6. A hyperplane in ℝ𝑛 is a codimension 1 affine subspace. [So a hyperplane is of
the form {𝑥 ∈ ℝ𝑛 : 𝑓 (𝑥) = 𝑎}, where 𝑓 : ℝ𝑛 → ℝ is a linear functional and 𝑎 ∈ ℝ.]

Definition 16.7. A hyperplane arrangement in ℝ𝑛 is a set of hyperplanes.

Definition 16.8. A hyperplane arrangementH is central if all of the hyperplanes inH contain
the origin. Instead of affine subspaces, they’re linear subspaces.

AssumeH is finite and central.

Definition 16.9. A region ofH is the closure of a connected component of ℝ𝑛 \ ∪𝐻∈H𝐻 .

Definition 16.10. A wall of a region 𝑅 is a hyperplane in H whose intersection with 𝑅 has
codimension 1.

Definition 16.11. A region is simplicial if it has exactly 𝑛 walls. Say H is simplicial if all of its
regions are simplicial.
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Figure 1. Happy Halloween!

Example 16.12. Every finite central arrangement in ℝ2 is simplicial.

Exercise on final pset: Assume ∩𝐻∈H𝐻 = {0}. Find a finite central hyperplane arrangement
in ℝ3 that is not simplicial.

Example 16.13. Let𝑊 be a finite Coxeter group. Then H𝑊 is simplicial. The walls of 𝑤𝔹 are
the hyperplanes 𝐻𝑤−1𝛼𝑠 for 𝑠 ∈ 𝑆.
Definition 16.14. A hyperplane arrangment is essential if ∩𝐻∈H𝐻 = {0}.

Let H be a finite central essential hyperplane arrangement in ℝ𝑛 . Fix a base region 𝔹 of H .
For each region 𝑅, let Inv(𝑅) be the set of hyperplanes inH that separate 𝑅 from 𝔹.

example with R,B invRmake diagram
Definition 16.15. The poset of regions of H is the partial order on the set of regions in which
𝑅 ⊆ 𝑅′ if Inv(𝑅) ⊂ Inv(𝑅′). Note this depends on the choice of base region 𝔹.

The poset of regions is the left weak order in the case of Coxeter groups. Consider H𝑊 as
before. For𝑤 ∈𝑊 ,

Inv(𝑤𝔹) = {𝐻𝛽 : 𝑡𝛽 ∈ 𝑇𝑅 (𝑤)}.
Thus, the poset of regions ofH𝑊 is the left weak order on𝑊 [since 𝑢 ≤𝐿 𝑣 iff 𝑇𝑅 (𝑢) ⊆ 𝑇𝑅 (𝑣)].
Theorem16.16 (Bjorner-Edelman-Ziegler). LetH be a finite central essential hyperplane arrange-
ment in ℝ𝑛 , and fix a base region 𝔹. IfH is simplicial, then the poset of regions is a lattice. True for
any choice of base region.

Summary: Consider the sets 𝑇 of reflections, 𝜙+ of positive roots, H𝑊 of hyperplanes in
Coxeter arrangments. These are in bijection with one another.

Suppose 𝛽 ∈ 𝜙+. For𝑤 ∈𝑊 ,
𝑡𝛽 ∈ 𝑇𝑅 (𝑊 ) ⇐⇒ 𝑤𝛽 ∈ 𝜙− ⇐⇒ 𝐻𝛽 ∈ Inv(𝑤𝔹).

17. Halloween

For 𝛽 ∈ 𝜙+, let
𝑑𝑝 (𝛽) = min{𝑘 | 𝑤𝛽 ∈ 𝜙− for some𝑤 ∈𝑊, ℓ (𝑤) = 𝑘}.

We call 𝑑𝑝 (𝛽) the depth of 𝛽 . For example, 𝑑𝑝 (𝛽) = 1 if and only if 𝛽 ∈ {𝛼𝑠 | 𝑠 ∈ 𝑆}. The root
poset is the partial order on 𝜙+ defined so that 𝛽 ⋖ 𝛾 if 𝑑𝑝 (𝛾) = 𝑑𝑝 (𝛽) + 1 and 𝛾 = 𝑠𝛽 for some
𝑠 ∈ 𝑆 . The minimal elements of the root poset are the simple roots. The root poset is graded with
rank function 𝑑𝑝 .

Example 17.1. Consider 𝑆5 = 𝐴4. Write 𝑎𝑏𝑐𝑑 for 𝑎𝛼1 + 𝑏𝛼2 + 𝑐𝛼3 + 𝑑𝛼4. Add picture later.

Fact 17.2. Order ideals of the root poset of type 𝐴𝑛−1 are in bijection with Dyck paths of size 2𝑛.
Add picture later.

Use 𝜙+(𝑊 ) to denote the root poset of𝑊 . By the fact above, we have |𝐽 (𝜙+(𝐴𝑛−1)) | is the
Catalan number Cat(𝑆𝑛) = Cat(𝐴𝑛−1).
Fact 17.3. If𝑊 is a finite irreducible Coxeter group, then |𝐽 (𝜙+(𝑊 )) | = Cat(𝑊 ).

Example 17.4. Consider 𝑆3. Write 𝑎𝑏𝑐 for 𝑎𝛼1 + 𝑏𝛼2 + 𝑐𝛼3.
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17.1. Enumeration. For 𝐴 ⊂𝑊 , let 𝐴(𝑞) = ∑
𝑤∈𝐴 𝑞

ℓ (𝑤) (assume |𝑆 | < ∞). We want to compute
𝑊 (𝑞).

Lemma 17.5. If𝑊 =𝑊1 × · · · ×𝑊𝑘 is the direct product of Coxeter systems, then

𝑊 (𝑞) =
𝑘∏
𝑖=1

𝑊𝑖 (𝑞).

Proof. If𝑤 = (𝑤1, . . . ,𝑤𝑘), where𝑤𝑖 ∈𝑊𝑖 , then ℓ (𝑤) = ∑𝑘
𝑖=1 ℓ (𝑤𝑖). So

𝑊 (𝑞) =
∑︁
𝑤∈𝑊

𝑞ℓ (𝑤) =
∑︁
𝑤1∈𝑊1

· · ·
∑︁

𝑤𝑘∈𝑊𝑘

𝑞ℓ (𝑤1)+···+ℓ (𝑤𝑘 ) =
𝑘∏
𝑖=1

𝑊𝑖 (𝑞),

as desired. □

Lemma 17.6. For 𝐽 ⊂ 𝑆 , we have𝑊 (𝑞) =𝑊 𝐽 (𝑞)𝑊𝐽 (𝑞).

Proof. We have

𝑊 (𝑞) =
∑︁
𝑤∈𝑊

𝑞ℓ (𝑤) =
∑︁
𝑤∈𝑊

𝑞ℓ (𝑤 𝐽 )+ℓ (𝑤 𝐽 ) =
∑︁
𝑤 𝐽 ∈𝑊𝐽

𝑞ℓ (𝑤 𝐽 )
∑︁

𝑤 𝐽 ∈𝑊 𝐽

𝑞ℓ (𝑤
𝐽 ),

as desired. □

Thus, in order to compute𝑊 (𝑞), we just need to compute𝑊𝐽 (𝑞) and𝑊 𝐽 (𝑞) for some ∅ ≠

𝐽 ⊊ 𝑆 . Since𝑊𝐽 is a Coxeter group, we can assume inductively that we have computed𝑊𝐽 (𝑞).
But𝑊 𝐽 is not a Coxeter group.

Recall that 𝐷 𝐽

𝐼
= {𝑤 ∈𝑊 | 𝐼 ⊂ 𝐷𝑅 (𝑤) ⊂ 𝐽𝑆 }, 𝐷𝐼 = 𝐷𝐼 𝐼 , and𝑊 𝐽 = 𝐷

𝑆\𝐽
∅ .

Proposition 17.7. For 𝐼 ⊂ 𝐽 ⊂ 𝑆 , we have

𝐷
𝐽

𝐼
(𝑞) =

∑︁
𝐽\𝐼⊂𝐾⊂𝐽

(−1) |𝐽\𝐾 |𝑊 𝑆\𝐾 (𝑞).

Proof. For each 𝐾 ⊂ 𝑆 , we have
𝑆𝑆⊂𝐾 (𝑞) =

∑︁
𝐿⊂𝐾

𝐷𝐿 (𝑞).

Thus, ∑︁
𝐽\𝐼⊂𝐾⊂𝐽

(−1) |𝐽\𝐾 |𝑊 𝑆\𝐾 (𝑞) =
∑︁

𝐽\𝐼⊂𝐾⊂𝐽
(−1) |𝐽\𝐾 |

∑︁
𝐿⊂𝐾

𝐷𝐿 (𝑞) =
∑︁
𝐿⊂𝐽

𝐷𝐿 (𝑞)
∑︁

(𝐽\𝐼 )∪𝐿⊂𝐾⊂𝐽
(−1) |𝐽\𝐾 | .

By the Principle of Inclusion-Exclusion, we have∑︁
(𝐽\𝐼∪𝐿⊂𝐾⊂𝐽

(−1) |𝐽\𝐾 | =
{

1 if (𝐽 \ 𝐼 ) ∪ 𝐿 = 𝐽 ;
0 otherwise.

So, ∑︁
𝐿⊂𝐽

𝐷𝐿 (𝑞)
∑︁

(𝐽\𝐼 )∪𝐿⊂𝐾⊂𝐽
(−1) |𝐽\𝐾 | =

∑︁
𝐼⊂𝐿⊂𝐽

𝐷𝐿 (𝑞) = 𝐷 𝐽

𝐼
(𝑞),

as desired. □
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Corollary 17.8. If𝑊 is finite, then ∑︁
𝐾⊂𝑆

(−1) |𝐾 |
𝑊𝐾 (𝑞)

=
𝑞ℓ (𝑤0)

𝑊 (𝑞) .

If𝑊 is infinite, then ∑︁
𝐾⊂𝑆

(−1) |𝐾 |
𝑊𝐾 (𝑞)

= 0.

Proof. Put 𝐼 = 𝐽 = 𝑆 in the Proposition:

𝐷𝑆
𝑆
(𝑞)

𝑊 (𝑞) =
∑︁
𝐾⊂𝑆

(−1) |𝑆\𝐾 |𝑊
𝑆\𝐾 (𝑞)
𝑊 (𝑞) =

∑︁
𝐾⊂𝑆

(−1) |𝑆\𝐾 |
𝑊𝑆\𝐾 (𝑤) =

∑︁
𝐾⊂𝑆

(−1) |𝐾 |
𝑊𝐾 (𝑞)

.

For𝑊 finite, note that 𝐷𝑆
𝑆
(𝑞) = 𝑞ℓ (𝑤0) ; for𝑊 infinite, note that 𝐷𝑆

𝑆
(𝑞) = 0. □

Example 17.9. Let𝑊 = 𝐵2 with simple reflections 𝑆 = {𝑎, 𝑏} and𝑚(𝑎, 𝑏) = 4. We have ℓ (𝑤0) =
ℓ (𝑎𝑏𝑎𝑏) = 4, so

𝑞4

𝑊 (𝑞) =
1

𝑊∅(𝑞)
− 1
𝑊𝑎 (𝑞)

− 1
𝑊𝑏 (𝑞)

+ 1
𝑊 (𝑞) = 1 − 1

1 + 𝑞 − 1
𝑞 + 1

+ 1
𝑊 (𝑞) ,

so

𝑊 (𝑞) = 1 + 𝑞
𝑞4(𝑞 − 1) .

Example 17.10. Consider𝑊 given by 𝑆 = {𝑎, 𝑏, 𝑐} with unlabeled edges between 𝑏, 𝑐 , and 𝑐, 𝑎
and an edge with label 4 between 𝑎, 𝑏. The group𝑊 is infinite, so

0 =
1

𝑊∅(𝑞)
− 1
𝑊𝑎 (𝑞)

− 1
𝑊𝑏 (𝑞)

− 1
𝑊𝑐 (𝑞)

+ 1
𝑊𝑎𝑏 (𝑞)

+ 1
𝑊𝑎𝑐 (𝑞)

+ 1
𝑊𝑏𝑐 (𝑞)

− 1
𝑊 (𝑞) .

This is

1 − 1
1 + 𝑞 − 1

1 + 𝑞 − 1
1 + 𝑞 + 𝑞

4(𝑞 − 1)
1 + 𝑞 + 1

1 + 2𝑞 + 2𝑞2 + 𝑞3 + 1
1 + 2𝑞 + 2𝑞2 + 𝑞3 − 1

𝑊 (𝑞) .

Solving this yields

𝑊 (𝑞) = (1 + 𝑞) (1 + 𝑞 + 𝑞2) (1 + 𝑞 + 𝑞2 + 𝑞3)
1 − 𝑞2 − 𝑞3 − 𝑞4 + 𝑞6 .

Recall that if𝑊 = 𝐴𝑛 , then𝑊 (𝑞) = ∏𝑛
𝑖=1

1−𝑞𝑖+1

1−𝑞 =
∏𝑛
𝑖=1 [𝑖 + 1]𝑞 , where

[𝑘]𝑞 =
1 − 𝑞𝑘
1 − 𝑞 = 1 + 𝑞 + 𝑞2 + · · · + 𝑞𝑘−1

is the 𝑞-analogue of the number 𝑞.

18. Thursday November 2

Erratum: Maximal elements in the absolute order need not be Coxeter elements.
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18.1. It’s Möbin Time. Let

[𝑘]𝑞 =
1 − 𝑞𝑘
1 − 𝑞 = 1 + 𝑞 + 𝑞2 + · · · + 𝑞𝑘−1.

Theorem 18.1. Suppose (𝑊,𝑆) is finite and irreducible. Let 𝑛 = |𝑆 |. There exist positive integers
𝑒1, . . . , 𝑒𝑛 such that

𝑊 (𝑞) =
𝑛∏
𝑖=1

[𝑒𝑖 + 1]𝑞 .

In particular, |𝑊 | = ∏𝑛
𝑖=1(𝑒𝑖 + 1) and |𝑇 | = ℓ (𝑤0) =

∑𝑛
𝑖=1 𝑒𝑖 .

Example 18.2. If𝑊 = 𝑆𝑛+1 = 𝐴𝑛 , then𝑊 (𝑞) = ∏𝑛
𝑖=1 [𝑖 + 1]𝑞 . The numbers 𝑒1, . . . , 𝑒𝑛 are called

the exponents of𝑊 .

Let (𝑊,𝑆) be an affine irreducible Coxeter system. Let 𝑒1, . . . , 𝑒𝑛 be the exponents of the
associated finite Coxeter group. Then

𝑊 (𝑞) =
𝑛∏
𝑖=1

[𝑒𝑖 + 1]𝑞
1 − 𝑞𝑒𝑖 .

Example 18.3. We have

𝑆𝑛 (𝑞) =
𝑛∏
𝑖=1

[𝑖 + 1]𝑞
1 − 𝑞𝑖 =

1 − 𝑞𝑛+1

(1 − 𝑞)𝑛+1 .

Let 𝑃 be a finite poset. The Möbius function of 𝑃 is the map
𝜇 = 𝜇𝑃 : {(𝑥,𝑦) ∈ 𝑃 × 𝑃 | 𝑥 ≤ 𝑦} → ℤ

defined by the conditions 𝜇 (𝑥, 𝑥) = 1 and∑︁
𝑧∈[𝑥,𝑦]

𝜇 (𝑥, 𝑧) = 0

for all 𝑥 < 𝑦.

Example 18.4. Consider the following poset; we label 𝑥 with 𝜇 (̂0, 𝑥), where 0̂ is the minimal
element:

1

−1 −1

10

1 0 0

−1

We also note that
𝜇 (𝑥,𝑦) = −

∑︁
𝑥≤𝑧<𝑦

𝜇 (𝑥, 𝑧).
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Exercise 18.5. Show the following.
(1) If 𝑃 is the 𝑛th Boolean lattice, then 𝜇 (∅, 𝑋 ) = (−1) |𝑋 | .
(2) If 𝑃 is the lattice of divisors of 𝑁 , then

𝜇 (1, 𝑘) =
{
(−1)𝑚 if 𝑘 is a product of𝑚 distinct primes;
0 otherwise.

Theorem 18.6 (Möbius Inversion Formula). Let 𝑃 be a finite poset with a unique minimal element
0̂. Suppose 𝑓 , 𝑔 : 𝑃 → ℂ are such that

(3) 𝑔(𝑦) =
∑︁
𝑥≤𝑦

𝑓 (𝑥)

for all 𝑦 ∈ 𝑃 . Then

(4) 𝑓 (𝑦) =
∑︁
𝑥≤𝑦

𝑔(𝑥)𝜇 (𝑥,𝑦)

for all 𝑦 ∈ 𝑃 .

Proof. Let𝑀 and𝑀′ be the matrices with rows and columns indexed by 𝑃 , wehere

𝑀𝑥𝑦 =

{
1 if 𝑥 ≤ 𝑦;
0 otherwise,

and 𝑀′
𝑦𝑥 =

{
𝜇 (𝑥,𝑦) if 𝑥 ≤ 𝑦;
0 otherwise.

Think of 𝑓 and 𝑔 as vectors whose coordinates are indexed by 𝑃 . Then (3) gives us 𝑔 = 𝑀𝑓 , and
(4) tells us that 𝑓 = 𝑀′𝑔. Thus, it suffices to show that𝑀′ = 𝑀−1. Now,

(𝑀𝑀′)𝑥𝑦 =
∑︁
𝑧∈𝑃

𝑀𝑥𝑧𝑀
′
𝑧𝑦 =

∑︁
𝑧≤𝑥

𝑀′
𝑧𝑦 =

∑︁
𝑦≤𝑧≤𝑥

𝜇 (𝑦, 𝑧) =
{

1 if 𝑥 = 𝑦;
0 otherwise,

and this completes the proof. □

18.2. The Nerve. An abstract simplicial complex is a collection F of sets such that if 𝐴 ∈ F ,
then every subset of 𝐴 is in F .

Suppose𝑊 is infinite. The nerve of (𝑊,𝑆) is N(𝑊,𝑆) = {𝐽 ⊂ 𝑆 | #𝑊𝐽 < ∞}. Note that
N(𝑊,𝑆) is an abstract simplicial complex. We may think of N(𝑊,𝑆) ∪ {𝑆} as a poset under
inclusion.

Example 18.7. Consider the Coxeter group𝑊 generated by 𝑎, 𝑏, 𝑐, 𝑑 whose Coxeter graph has
an edge labeled 4 between 𝑎 and 𝑏, an unlabeled edge between 𝑎 and 𝑐 , an edge labeled 8 between
𝑏 and 𝑐 , and an unlabeled edge between 𝑐 and 𝑑 . We see that

N(𝑊,𝑆) = {∅, 𝑎, 𝑏, 𝑐, 𝑑, 𝑎𝑏, 𝑏𝑐, 𝑎𝑐, 𝑎𝑑, 𝑏𝑑, 𝑐𝑑, 𝑎𝑏𝑑, 𝑎𝑐𝑑}.

Let 𝜇N be the Möbius function of N(𝑊,𝑆) ∪ {𝑆}. If 𝐼 , 𝐾 ∈ N (𝑊,𝑆) and 𝐾 ⊂ 𝐼 , then [𝐾, 𝐼 ]
is isomorphic to the Boolean lattice of subsets of 𝐼 \ 𝐾 (note that 𝐼 \ 𝐾 ⊃ 𝐽 ↦→ 𝐾 ∪ 𝐽 ). Hence,
𝜇N (𝐾, 𝐼 ) = (−1) |𝐼\𝐾 | .

Proposition 18.8. If (𝑊,𝑆) is an infinite Coxeter system, then

1
𝑊 (𝑞) = −

∑︁
𝐾⊂N(𝑊,𝑆)

N(𝐾, 𝑆)
𝑊𝑘 (𝑞)

.

https://imgflip.com/i/84p21g
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Proof. Let N = N(𝑊,𝑆). If 𝐼 ⊂ 𝑆 and 𝐼 ∉ N , then𝑊𝐼 is infinite, so∑︁
𝐾⊂𝐼

(−1) |𝐼\𝐾 |
𝑊𝐾 (𝑞)

= 0.

Then ∑︁
𝐼∉N

∑︁
𝐾⊂𝐼

(−1) |𝐼\𝐾 |
𝑊𝐾 (𝑞)

= 0.

Hence, ∑︁
𝐾⊂𝑆

1
𝑊𝐾 (𝑞)

∑︁
𝐼⊃𝐾,𝐼∉N

(−1) |𝐼\𝐾 | = 0.

For fixed 𝐾 , ∑︁
𝐼⊃𝐾,𝐼∉N

(−1) |𝐼\𝐾 | = −
∑︁

𝐼⊃𝐾,𝐼∉N
(−1) |𝐼\𝐾 | = −

∑︁
𝐼⊃𝐾,𝐼∈N

𝜇N (𝐾, 𝐼 ) = 𝜇N (𝐾, 𝑆),

as desired. □

19. Tuesday November 7

Recall that if (𝑊,𝑆) is an infinite Coxeter system, then

− 1
𝑊 (𝑞) =

∑︁
𝐾∈N (𝑊,𝑆)

𝜇N (𝐾, 𝑆)
𝑊𝐾 (𝑞)

where 𝜇N is the Möbius function of N(𝑊,𝑆) ∪ {𝑆}.

Example 19.1. LetU𝑛 be the universal Coxeter group on 𝑛 generators. The Coxeter graph ofU𝑛

is a complete graph with 𝑛 vertices and each edge labeled∞. ThenN(U𝑛, 𝑆) = {𝐽 ⊂ 𝑆 | |𝐽 | ≤ 1}.
We have that N(U𝑛, 𝑆) ∪ {𝑆} is given by

∅

{𝑠1} {𝑠2} · · · {𝑠𝑛}

𝑆

We see that 𝜇N (𝑆, 𝑆) = 1, 𝜇N ({𝑠𝑖}, 𝑆) = −1, and 𝜇N (∅, 𝑆) = 𝑛 − 1. So

− 1
U𝑛 (𝑞)

= 𝑛 − 1 + 𝑛 · (−1)
1 + 𝑞 =

(𝑛 − 1)𝑞 − 1
1 + 𝑞 .

19.1. Tableaux. A partition of 𝑛 is a tuple 𝜆 = (𝜆1, . . . , 𝜆𝑘) of positive integers such that 𝜆1 ≥
𝜆2 ≥ · · · ≥ 𝜆𝑘 and 𝜆1 + · · · +𝜆𝑘 = 𝑛. The numbers 𝜆1, . . . , 𝜆𝑘 are the parts of 𝜆. The length of 𝜆 is 𝑘 .
We can represent a partition as a Young diagram—a collection of left-justified rows of boxes such
that the 𝑖th row has 𝜆𝑖 boxes. Young diagrams can be viewed as posets by rotating the diagram
45◦ clockwise and viewing the resulting figure as a Hasse diagram whose vertices are the boxes
with edges given by box adjacencies.
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Example 19.2. The partition (5, 4, 2, 2, 1) of 13 corresponds to the following Young diagram:

A standard Young tableau of shape 𝜆 is a filling of the boxes 𝜆 with 1, . . . , 𝑛 so that the rows
and columns are increasing.

Example 19.3. The standard Young tableau of shape (3, 3) are

1 2 3
4 5 6

1 2 4
3 5 6

1 2 5
3 4 6

1 3 4
2 5 6

1 3 5
2 4 6

If we view a young diagram 𝜆 as a poset, then the standard Young tableaux correspond to
linear extensions of the poset.

Flipping a standard Young tableau 𝑇 of shape 𝜆 across the main diagonal yields a standard
Young tableau 𝑇 ′ of shape 𝜆′. Call 𝜆′ and 𝑇 ′ the transpose of 𝜆 and 𝑇 , respectively. We use 𝑓 𝜆 to
denote the number of standard Young tableaux of shape 𝜆.

For a box 𝑏 in a Young diagram 𝜆, its hook length, denoted ℎ𝑏 , is the number of boxes strictly
below or to the right of 𝑏 plus 1.

Example 19.4. The boxes below or to the right of 𝑏 are labeled with an X:

𝑏 X
X
X

Hence, the hook length of 𝑏 is 4.

Theorem 19.5 (The Hook-Length Formula). Let 𝜆 be a partition of 𝑛. Then

𝑓 𝜆 =
𝑛!∏
𝑏∈𝜆 ℎ𝑏

Example 19.6. For the partition (4, 2, 1), the hook lengths of each box are given by

6 4 2 1
3 1
1

,

so
𝑓 𝜆 =

7!
6 · 4 · 2 · 1 · 3 · 1 · 1

= 35.
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19.2. A Representation-theoretic Interlude.

Fact 19.7. Partitions of 𝑛 correspond to irreducible representations of 𝑆𝑛 . The dimension of the
irreducible representation corresponding to 𝜆 is 𝑓 𝜆 .

Example 19.8. Consider 𝑆3. The partition (3) corresponds to the trivial representation—the one-
dimensional representation given by𝑤 ·𝛽 = 𝛽 for all𝑤 ∈ 𝑆3. The partition (1, 1, 1) corresponds to
the sign representation—the one-dimensional representation given by𝑤 · 𝛽 = (−1)ℓ (𝑤)𝛽 . Finally,
the partition (2, 1) corresponds to the standard geometric representation, which, recall, is two-
dimensional.

In general, if 𝐺 is a finite group, then we have

|𝐺 | =
∑︁

irreps 𝑉 of 𝐺
dim(𝑉 )2.

When 𝐺 = 𝑆𝑛 , this tells us that

𝑛! =
∑︁
𝜆∈𝜋 (𝑛)

(𝑓 𝜆)2,

where 𝜋 (𝑛) denotes the partitions of 𝑛.13 A bijective proof of this fact is given by the Robinson–
Schensted correspondence (commonly referred to as the RS or RSK correspondence, or even as
RS or RSK).14 The RS correspondence is a bijection

RS : 𝑆𝑛 →
⋃

𝜆∈𝜋 (𝑛)
(𝑆𝑌𝑇 (𝜆) × 𝑆𝑌𝑇 (𝜆)),

where 𝑆𝑌𝑇 (𝜆) denotes the set of standard Young tableaux of shape 𝜆. We illustrate RS with the
following example.

Example 19.9. Let 𝑛 = 5, and let𝑤 = 25134.

13One way of proving this formula is via the Robinson–Schensted correspondence. Another way, which I prefer,
was given by Vershik and Okounkov in this paper. In the paper, they show that standard Young tableaux of shape 𝜆
index basis vectors of the representation 𝑆𝑛 corresponding to 𝜆. From this, the formula is obvious.
14Craige Schensted now goes by the name Ea Ea. He changed his name to Ea, the Babylonian name for the Sumerian
god Enki, in 1995. In 1999, he changed his name again, this time to Ea Ea. Thus, arguably, the RS (or RSK) corre-
spondence, as it is commonly referred to, should be renamed the RE (or REK) correspondence. See here for a more
detailed account of Ea Ea’s life.

https://arxiv.org/pdf/math/0503040.pdf
https://en.wikipedia.org/wiki/Craige_Schensted
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Step 𝑃 𝑄

1 2 1

2 2 5 1 2

3 1 5
2

1 2
3

4 1 3
2 5

1 2
3 4

5 1 3 4
2 5

1 2 5
3 4

Thus, we have𝑤 ↦→ (𝑃 (𝑤), 𝑄 (𝑤)), where the pair (𝑃 (𝑤), 𝑄 (𝑤)) is given by

𝑃 (𝑤) = 1 3 4
2 5

𝑄 (𝑤) = 1 2 5
3 4

.

For 𝑤 ∈ 𝑆𝑛 , we let RS(𝑤) = (𝑃 (𝑤), 𝑄 (𝑤)). Let shape(𝑤) be the partition 𝜆 such that
𝑃 (𝑤), 𝑄 (𝑤) ∈ 𝑆𝑌𝑇 (𝜆).

Fact 19.10. We have that 𝑃 (𝑤−1) = 𝑄 (𝑤) and 𝑄 (𝑤−1) = 𝑃 (𝑤).

19.3. Jeu de Taquin and Promotion. Start with some standard Young Tableau. Delete 1, and
slide the smallest number below or right of the empty box into the empty box; repeat this process
until the empty box is a corner. Place 𝑛 + 1 into the empty box and decrement all of the entries
by 1. The sliding process is called Jeu de Taquin, and the resulting tableau is denoted by Pro(𝑇 ).

Example 19.11. The tableau 𝑇 , given by

1 2 5 9
3 6 8
4 7

,

is taken to
1 4 7 8
2 5 9
3 6

.

More generally, promotion can be defined on the set L(𝑃) of linear extensions of a finite
poset.

Example 19.12. Add example later.
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One can check that
Pro = BK𝑛−1 ◦ · · · ◦ BK2 ◦BK1;

as an exercise, try this yourself on the example above.
Let 𝜕𝑖 = BK𝑖 ◦ · · · ◦ BK2 ◦BK1. Then Pro = 𝜕𝑛−1. We define evacuation to be the map Ev :

L(𝑃) → L(𝑃) defined by Ev = 𝜕1 ◦ 𝜕2 ◦ · · · ◦ 𝜕𝑛−3 ◦ 𝜕𝑛−2 ◦ 𝜕𝑛−1.
𝑠0

. . .𝑠1 𝑠2 𝑠𝑛−2 𝑠𝑛−1

20. Thursday November 9

NO CLASS 11/21
Recall: 𝑃 is an 𝑛-element poset. L(𝑃) is the set of linear extensions of 𝑃 .

Pro = BK𝑛−1 ◦... ◦ BK2 ◦BK1

𝜕𝑖 + BK𝑖 ◦... ◦ BK2 ◦BK1

Ev = 𝜕1 ◦ 𝜕2 ◦ ... ◦ 𝜕𝑛−1

Example 20.1. picture insert picture
20.0.1. Symmetries in Robinson-Schensted. 𝑃 (𝑤−1) = 𝑄 (𝑤), 𝑄 (𝑤−1) = 𝑃 (𝑤).

𝑃 (𝑤𝑤0) = 𝑃 (𝑤)′

𝑄 (𝑤𝑤0) = Ev(𝑃 (𝑤))
𝑃 (𝑤0𝑤𝑤0) = Ev(𝑃 (𝑤))
𝑄 (𝑤0𝑤𝑤0) = Ev(𝑄 (𝑤))

Example 20.2. picture insert picture
Theorem 20.3 (Stanley). The number of reduced words for the long element𝑤0 ∈ 𝑆𝑛 is equal to

𝑓 𝛿𝑛−1 = | SYT(𝛿𝑛−1) |,
where 𝛿𝑛−1 = (𝑛 − 1, 𝑛 − 2, ..., 3, 2, 1).

Note: 𝑛 = 4. By the Hook-Length Formula, insert picture.

𝑓 𝛿𝑛−1 =

(𝑛
2
)
!

1𝑛−13𝑛−2...(2𝑛 − 3)1 .

Theorem 20.4 (Edelman-Greene bijection). Let 𝑁 =
(𝑛
2
)
. Let 𝑇 ∈ SYT(𝛿𝑛−1). Number the corners

of 𝛿𝑛−1 as 1, ..., 𝑛 − 1 from bottom to top. Let 𝛾𝑘 be the number of the corner containing the entry 𝑁
in Pro𝑘 (𝑇 ).

Let EG(𝑇 ) = 𝑠𝛾0𝑠𝛾1 ...𝑠𝛾𝑁−1 .

Example 20.5. 𝑛 = 4. EG(𝑇 ) = 𝑠2𝑠3𝑠1𝑠2𝑠3𝑠1. insert picture
Note that EG(Pro(𝑇 )) = 𝑠𝛾0𝑠𝛾1 ...𝑠𝛾𝑁 , 𝑤0 = 𝑠𝛾0𝑠𝛾1 ...𝑠𝛾𝑁−1 = 𝑠𝛾1𝑠𝛾2 ...𝑠𝛾𝑁 . Then 𝑠𝛾1 ...𝑠𝛾𝑁−1 = 𝑠𝛾0𝑤0 =

𝑤0𝑠𝛾𝑁 , so 𝑠𝛾𝑁 = 𝑤0𝑠𝛾0𝑤0. Thus, 𝛾𝑁 = 𝑛 − 𝛾0. Similarly, 𝛾𝑁+1 = 𝑛 − 𝛾1. In general, 𝛾𝑁+𝑘 = 𝑛 − 𝛾𝑘 for
all 𝑘 ≥ 0. Note: 𝑛 − 𝛾𝑘 is the corner containing 𝑁 in Pro𝑘 (𝑇 ′).

𝑛 − 𝛾𝑘 (𝑇 ) = 𝛾𝑘 (𝑇 ′).
Since EG is a bijection, it follows that Pro𝑁 (𝑇 ) = 𝑇 ′. So Pro2𝑁 (𝑇 ) = 𝑇 .
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20.0.2. Dynamical Algebraic Combinatorics. Let 𝑋 be a set of combinatorial objects. Suppose
𝑓 : 𝑋 → 𝑋 is some interesting function. Study what happens when we iterate 𝑓 .

Example 20.6. Pop on a lattice.

Example 20.7. Kreweras complementation on noncrossing partitions.

Example 20.8. Pro on L(𝑃).
Theorem 20.9 (Edelman-Greene, 1987). The order of Pro : SYT(𝛿𝑛−1) → SYT(𝛿𝑛−1) is 2

(𝑛
2
)
=

2|𝛿𝑛−1 |.
Theorem 20.10 (Schützenberger, 1977). If 𝑃 is a rectangle poset, then the order of Pro : L(𝑃) →
L(𝑃) is |𝑃 |.
Theorem 20.11 (Haiman, 1992). If 𝑃 is a shifted double staircase or a shifted trapezoid, then Pro :
L(𝑃) → L(𝑃) has order |𝑃 |.
Theorem 20.12 (Hopkins-Rubey, 2022). IF 𝑃 is a chain of V’s, then the order of Pro : L(𝑃) →
L(𝑃) is 2|𝑃 |.

These are all the posets for which “nice" orbits under promotion are known to exist.

Definition 20.13. [Reiner-Stanton-White, 2004] Let 𝑋 be a finite set. Suppose 𝑓 : 𝑋 → 𝑋 is a
bijection of order 𝜔. Let 𝐹 (𝑞) ∈ ℂ[𝑞] .We say (𝑋, 𝑓 , 𝐹 (𝑞)) exhibits the cyclic sieving phenomenon
if for every 𝑘 ∈ ℤ, the number of elements of 𝑋 fixed by 𝑓 𝑘 is

𝐹 (𝑒2𝜋𝑖𝑘/𝜔 ) .
Example 20.14. Pro : SYT(3, 3) → SYT(3, 3)

Let 𝐹 (𝑞) = (1 − 𝑞 + 𝑞2) (1 + 𝑞 + 𝑞2 + 𝑞3 + 𝑞4). 𝐹 (𝑒2𝜋𝑖/6) = 0.

𝐹 (𝑒2𝜋𝑖/6) = 0

𝐹 (𝑒2𝜋𝑖 (2)/6) = 2

𝐹 (𝑒2𝜋𝑖 (3)/6) = 3

𝐹 (𝑒2𝜋𝑖 (4)/6) = 2

𝐹 (𝑒2𝜋𝑖 (5)/6) = 0

𝐹 (𝑒2𝜋𝑖 (6)/6) = 5

21. Tuesday November 14

Recall: that [𝑘]𝑞 = (1−𝑞𝑘)/(1−𝑞) = 1+𝑞+𝑞2+· · ·+𝑞𝑘−1 and that [𝑘]!𝑞 = [𝑘]𝑞 [𝑘−1]𝑞 · · · [1]𝑞 .
Suppose 𝑋 is a finite set, 𝑓 : 𝑋 → 𝑋 is an invertible map of order 𝜔 , and 𝐹 (𝑞) ∈ ℂ[𝑞]. We say
(𝑋, 𝑓 , 𝐹 (𝑞)) exhibits the cyclic sieving phenomenon if for all 𝑘 ∈ ℤ, the number of fixed points
of 𝑓 𝑘 is 𝐹 (𝑒2𝜋𝑖𝑘/𝜔 ).
Theorem 21.1 (Rhoades, 2010). Suppose 𝜆 ∈ 𝜋 (𝑛) is a rectangular partition. The triple(

SYT(𝜆), Pro,
[𝑛]!𝑞∏
𝑏∈𝜆 [ℎ𝑏]𝑞

)
exhibits the cyclic sieving phenomenon.
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21.1. Toric Promotion. Let𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 vertices. A labeling of𝐺 is a bijection
𝑉 → [𝑛]. Let Λ𝐺 be the set of labelings of 𝐺 . Given a labeling 𝜎 ∈ Λ𝐺 , we obtain an acyclic
orientation of 𝐺 by directing each edge {𝑢, 𝑣} from 𝑢 to 𝑣 if 𝜎 (𝑢) < 𝜎 (𝑣). This yields a poset
(𝑉 , ≤𝜎 ) where𝑢 ≤𝜎 𝑣 if there is a directed path from𝑢 to 𝑣 . For 𝑖 ∈ [𝑛−1], define BK𝑖 : Λ𝐺 → Λ𝐺
by

BK𝑖 (𝜎) =
{
(𝑖 𝑖 + 1)𝜎 if 𝜎−1(𝑖) and 𝜎−1(𝑖 + 1) are not adjacent;
0 otherwise.

Remark 21.2. If 1 ≤ 𝑖 ≤ 𝑛 − 1, then 𝜎 and BK𝑖 (𝜎) induce the same partial order on 𝑉 . Also, 𝜎
and BK𝑖 (𝜎) are both linear extensions of this poset and BK𝑖 is the same as before.

Example 21.3. Consider the graph 𝐺

𝑥

𝑣

𝑦

𝑤
𝑧

with labeling 𝜎 given by

5

1

2

3
4

Note that we have drawn the associated acyclic orientation in the above. Now, it is not difficult
to see that BK1(𝜎) is given by

5

2

1

3
4

and we see that (𝑉 , ≤𝜎 ) = (𝑉 , ≤BK1 (𝜎)).

So it makes sense to define Pro : Λ𝐺 → Λ𝐺 by Pro = BK𝑛−1 ◦ · · · ◦ BK2 ◦BK1.
Idea: With the same setup as in the above, let 𝐺 be labeled by ℤ/𝑛ℤ and define BK𝑛 analo-

gously. Define toric promotion to be the map TPro : Λ𝐺 → Λ𝐺 given by

TPro = BK𝑛 ◦BK𝑛−1 ◦ · · · ◦ BK2 ◦BK1 .

Example 21.4. Consider the following labeled graph; we will apply toric promotion to it. Each
step illustrates a Bender-Knuth toggle; the composition of all 5 steps is one application of TPro.
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3 2 4 5 1

3 1 4 5 1

2 1 4 5 3

2 1 3 5 4

2 1 3 5 4

2 5 3 1 4

BK1

BK2

BK3

BK4

BK5

Example 21.5. .Add picture
later Theorem 21.6 (Defant, 2023). If 𝐺 is a tree, then every orbit of TPro has size 𝑛 − 1.

Idea: Let 𝜋 : [𝑛] → ℤ/𝑛ℤ be a bijection. Define permutoric promotion to be the map TPro𝜋 :
Λ𝐺 → Λ𝐺 given by TPro𝜋 = BK𝜋 (𝑛) ◦BK𝜋 (𝑛−1) ◦ · · · ◦BK𝜋 (1) . A cyclic descent of 𝜋−1 is an element
𝑖 ∈ ℤ/𝑛ℤ such that 𝜋−1(𝑖) > 𝜋−1(𝑖 + 1). Let[

𝑎

𝑏

]
𝑞

=
[𝑎]!𝑞

[𝑏]!𝑞 [𝑎 − 𝑏]!𝑞
.

Theorem 21.7 (Defant–Madhukara–Thomas, 2023+). Let 𝜋 : [𝑛] → ℤ/𝑛ℤ be a bijection. Let 𝑑
be the number of cyclic descents of 𝜋−1. The order of TPro𝜋 : ΛPathn → ΛPath𝑛 is 𝑛(𝑛 −𝑑). Moreover,(

ΛPathn,TPro𝜋 , 𝑛(𝑑 − 1)!(𝑛 − 𝑑 − 1)![𝑛 − 𝑑]𝑞𝑑
[
𝑛 − 1
𝑑 − 1

]
𝑞

)
exhibits the cyclic sieving property.

21.2. Promotion Sorting. Let 𝑃 = ( [𝑛], ≤𝑃 ) be a poset. Recall that BK𝑖 : L(𝑃) → L(𝑃) is
defined by

BK𝑖 (𝑢) =
{
𝑢 if 𝑢−1(𝑖) <𝑃 𝑢−1(𝑖 + 1);
𝑠𝑖𝑢 otherwise.

Define the noninvertible Bender-Knuth toggle 𝜏𝑖 : 𝑆𝑛 → 𝑆𝑛 by

𝜏𝑖 (𝑢) =
{
𝑢 if 𝑢−1(𝑖) <𝑃 𝑢−1(𝑖 + 1);
𝑠𝑖𝑢 otherwise.
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Example 21.8. Add example later.

Define extended promotion to be the map Pro = 𝜏𝑛−1 ◦ · · · ◦ 𝜏2 ◦ 𝜏1. Define extended evacuation
to be the map Ev = 𝜕1 ◦ 𝜕2 ◦ · · · ◦ 𝜕𝑛−1, where 𝜕𝑖 = 𝜏𝑖 ◦ · · · ◦ 𝜏2𝜏1.

Theorem 21.9 (Defant–Kravitz, 2022). We have Pro𝑛−1(𝑆𝑛) = L(𝑃). Also, Ev(𝑆𝑛) = L(𝑃).

Define the sorting time of𝑤 ∈ 𝑆𝑛 to be the smallest 𝑡 ≥ 0 such that Pro𝑡 (𝑤) ∈ L(𝑃). We say
that 𝑤 is tangled if it has sorting time 𝑛 − 1. Say 𝑤 is quasitangled if it has sorting time 𝑛 − 2.
Question: How many (quasi)tangled labelings does a given poset have? Answer: We don’t know
in general. Kravitz and Defant counted tangled labelings of posets that we call inflated rooted
trees. Hodges counted quasitangled labelings of inflated rooted trees with deflated leaves. Hodges
also found an algorithm to count labelings of 𝑃 with sorting time 𝑛 − 𝑘 − 1 when 𝑃 is a rooted
tree.

22. The Final Lecture

22.1. Bender–Knuth Billiards. Recall that we have a poset 𝑃 = ( [𝑛], ≤𝑃 ) and 𝜏𝑖 : 𝑆𝑛 → 𝑆𝑛

𝜏𝑖 (𝑢) =
{
𝑢 if 𝑢−1(𝑖) < 𝑢−1(𝑖 + 1);
𝑠𝑖𝑢 otherwise.

We have operators Pro = 𝜏𝑛−1 ◦ · · · ◦ 𝜏2 ◦ 𝜏1 and Ev = 𝜏1 ◦ (𝜏2 ◦ 𝜏1) ◦ · · · ◦ (𝜏𝑛−1 ◦ · · · ◦ 𝜏2 ◦ 𝜏1).

Theorem 22.1 (Defant–Kravitz, 2022). We have Pro𝑛−1(𝑆𝑛) = L(𝑃) and Ev(𝑆𝑛) = L(𝑃).

Recall that we say𝑤 ∈ 𝑆𝑛 is tangled if Pro𝑛−2(𝑤) ∉ L(𝑃).

Conjecture 22.2 (Defant–Kravitz, 2022). The number of tangled labelings of 𝑃 is at most (𝑛 − 1)!.

Let (𝑊,𝑆) be a Coxeter system. Let 𝑆 = {𝑠𝑖 | 𝑖 ∈ 𝐼 }, where 𝐼 is a finite index set. Let 𝜙 ⊂ 𝑉

be the root system. Fix a convex set L ⊂𝑊 . Identify 𝑤 ∈𝑊 with the region 𝑤𝔹 of the Coxeter
arrangement H𝑊 . Say a hyperplane 𝐻 ∈ H𝑊 is a window if there exist elements of L on both
sides of 𝐻 . Say 𝐻 is a one-way mirror if L lies on one side of 𝐻 .

Example 22.3. Consider𝑊 = 𝑆𝑛 . Recall that L is the set of linear extensions of some poset
𝑃 ( [𝑛], ≤𝑃 ). The hyperplne 𝐻𝑎𝑏 = {𝑥 ∈ 𝑉 ∗ | 𝑥𝑎 = 𝑥𝑏} is a window if and only if 𝑎 and 𝑏 are
incomparable in 𝑃 . If 𝑎 <𝑃 𝑏, then L lies on the side of 𝐻𝑎𝑏 given by 𝑥𝑎 ≤ 𝑥𝑏 , so 𝐻𝑎𝑏 is a one-way
mirror. Suppose 𝑢 ∈ 𝑆𝑛 and 1 ≤ 𝑖 ≤ 𝑛 − 1. Let 𝑎 = 𝑢−1(𝑖) and 𝑏 = 𝑢−1(𝑖 + 1). Then 𝐻𝑎𝑏 is the
hyperplane separating 𝑢 from 𝑠𝑖𝑢. We have

𝜏𝑖 (𝑢) =


𝑠𝑖𝑢 if 𝐻𝑎𝑏 is a window;
𝑠𝑖𝑢 if L ∪ {𝑠𝑖𝑢} lies on one side of 𝐻𝑎𝑏 ;
𝑢 if L ∪ {𝑢} lies on one side of 𝐻𝑎𝑏 .

Definition 22.4. (Barkley–Defant–Hodges–Kravitz–Lee) Suppose𝑢 ∈𝑊 and 𝑖 ∈ 𝐼 . Let𝐻 ∈ H𝑊

be the hyperplane separating 𝑢 from 𝑠𝑖𝑢. Let

𝜏𝑖 (𝑢) =


𝑠𝑖𝑢 if 𝐻 is a window;
𝑠𝑖𝑢 if L ∪ {𝑠𝑖𝑢} is on one side of 𝐻 ;
𝑢 if L ∪ {𝑢} lies on one side of 𝐻.
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Fix an ordering 𝑖1, 𝑖2, . . . , 𝑖𝑛 of 𝐼 . This corresponds to choosing the standard Coxeter element
𝑐 = 𝑠𝑖𝑛𝑠𝑖𝑛−1 · · · 𝑠𝑖1 . Let 𝑖 𝑗+𝑛 = 𝑖 𝑗 . Define Pro𝑐 = 𝜏𝑖𝑛 ◦ 𝜏𝑖𝑛−1 ◦ · · · ◦ 𝜏𝑖1 . Start at some 𝑢0 ∈ 𝑊 and
apply 𝜏𝑖1, 𝜏𝑖2, 𝜏𝑖3, . . .. This yields a sequence of elements 𝑢0, 𝑢1, 𝑢2, 𝑢3, . . . , where 𝑢 𝑗 = 𝜏𝑖 𝑗 (𝑢 𝑗−1). We
call this Bender–Knuth billiards, and we call 𝑢0, 𝑢1, 𝑢2, . . . a billiards path. Does the billiards path
always end up in L if L is finite?

Definition 22.5. We say that L is heavy if every Coxeter element 𝑐 and every starting point 𝑢0,
the billiards path eventually reaches L. We say the Coxeter element 𝑐 is futuristic if for every
nonempty finite convex set L and every starting point 𝑢0, the billiards path reaches L. We
say𝑊 is futuristic if every standard Coxeter element is futuristic (equivalently, every nonempty
finite convex set is heavy). We say that𝑊 is ancient (or maybe of yore) if no Coxeter element is
futuristic.

Theorem 22.6 (BDHKL). The Coxeter system (𝑊,𝑆) is futuristic if any of the following hold:
(1) 𝑊 is finite;
(2) 𝑊 = 𝑆𝑛 ;
(3) 𝑊 = 𝐶𝑛−1;
(4) |𝑆 | ≤ 3;
(5) the Coxeter graph is complete;
(6) 𝑊 is right-angled (𝑚(𝑠, 𝑠′) ∈ {2,∞} for all 𝑠, 𝑠′ ∈ 𝑆 with 𝑠 ≠ 𝑠′).

Theorem 22.7. The following Coxeter groups are ancient:

𝑎0

𝑎1

4

where 𝑎0, 𝑎1 ∈ {3, 4, . . .};

5

and

𝑏0

𝑏1

𝑏2

𝑏3

where 𝑏0, 𝑏1, 𝑏2, 𝑏3 ∈ {3, 4, . . .}.
Likewise, we may define Ev = 𝜏1 ◦ (𝜏2 ◦ 𝜏1) ◦ · · · ◦ (𝜏𝑛−1 ◦ · · · ◦ 𝜏2 ◦ 𝜏1). This is obtained from

the reduced word 𝑠1𝑠2𝑠1𝑠3𝑠2𝑠1 · · · 𝑠𝑛−1𝑠𝑛−2 · · · 𝑠2𝑠1 for𝑤0 by replacing each 𝑠𝑖 by 𝜏𝑖 .

Theorem 22.8 (BDHKL). Assume𝑊 is finite. Let L ⊂𝑊 be a convex set. If 𝑠𝑖𝑁 · · · 𝑠𝑖1 is a reduced
word for𝑤0, then (𝜏𝑖𝑁 ◦ · · · ◦ 𝜏𝑖1) (𝑊 ) = L.
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